85 research outputs found

    Shuttle-like supramolecular nanostructures formed by self-assembly of a porphyrin via an oil/water system

    Get PDF
    In this paper, in terms of the concentration of an aqueous solution of a surfactant, we investigate the self-assembly behavior of a porphyrin, 5, 10, 15, 20-tetra(4-pyridyl)-21H, 23H-porphine [H2TPyP], by using an oil/water system as the medium. We find that when a chloroform solution of H2TPyP is dropwise added into an aqueous solution of cetyltrimethylammonium bromide [CTAB] with a lower concentration, a large amount of irregular nanoarchitectures, together with a small amount of well-defined shuttle-like nanostructures, hollow nanospheres, and nanotubes, could be produced. While a moderate amount of shuttle-like nanostructures accompanied by a few irregular nanoarchitectures, solid nanospheres, and nanorods are produced when a CTAB aqueous solution in moderate concentration is employed, in contrast, a great quantity of shuttle-like nanostructures together with a negligible amount of solid nanospheres, nanofibers, and irregular nanostructures are manufactured when a high-concentration CTAB aqueous solution is involved. An explanation on the basis of the molecular geometry of H2TPyP and in terms of the intermolecular π-π interactions between H2TPyP units, and hydrophobic interactions between CTAB and H2TPyP has been proposed. The investigation gives deep insights into the self-assembly behavior of porphyrins in an oil/water system and provides important clues concerning the design of appropriate porphyrins when related subjects are addressed. Our investigation suggests that an oil/aqueous system might be an efficient medium for producing unique organic-based nanostructures

    Shuttle-like supramolecular nanostructures formed by self-assembly of a porphyrin via an oil/water system

    No full text
    Abstract In this paper, in terms of the concentration of an aqueous solution of a surfactant, we investigate the self-assembly behavior of a porphyrin, 5, 10, 15, 20-tetra(4-pyridyl)-21H, 23H-porphine [H2TPyP], by using an oil/water system as the medium. We find that when a chloroform solution of H2TPyP is dropwise added into an aqueous solution of cetyltrimethylammonium bromide [CTAB] with a lower concentration, a large amount of irregular nanoarchitectures, together with a small amount of well-defined shuttle-like nanostructures, hollow nanospheres, and nanotubes, could be produced. While a moderate amount of shuttle-like nanostructures accompanied by a few irregular nanoarchitectures, solid nanospheres, and nanorods are produced when a CTAB aqueous solution in moderate concentration is employed, in contrast, a great quantity of shuttle-like nanostructures together with a negligible amount of solid nanospheres, nanofibers, and irregular nanostructures are manufactured when a high-concentration CTAB aqueous solution is involved. An explanation on the basis of the molecular geometry of H2TPyP and in terms of the intermolecular &#960;-&#960; interactions between H2TPyP units, and hydrophobic interactions between CTAB and H2TPyP has been proposed. The investigation gives deep insights into the self-assembly behavior of porphyrins in an oil/water system and provides important clues concerning the design of appropriate porphyrins when related subjects are addressed. Our investigation suggests that an oil/aqueous system might be an efficient medium for producing unique organic-based nanostructures.</p

    A 1-dodecanethiol-based phase transfer protocol for the highly efficient extraction of noble metal ions from aqueous phase

    No full text
    A 1-dodecanethiol-based phase-transfer protocol is developed for the extraction of noble metal ions from aqueous solution to a hydrocarbon phase, which calls for first mixing the aqueous metal ion solution with an ethanolic solution of 1-dodecanethiol, and then extracting the coordination compounds formed between noble metal ions and 1-dodecanethiol into a non-polar organic solvent. A number of characterization techniques, including inductively coupled plasma atomic emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis demonstrate that this protocol could be applied to extract a wide variety of noble metal ions from water to dichloromethane with an efficiency of >96%, and has high selectivity for the separation of the noble metal ions from other transition metals. It is therefore an attractive alternative for the extraction of noble metals from water, soil, or waste printed circuit boards. (C) 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences

    A 1-dodecanethiol-based phase transfer protocol for the highly efficient extraction of noble metal ions from aqueous phase

    No full text
    A 1-dodecanethiol-based phase-transfer protocol is developed for the extraction of noble metal ions from aqueous solution to a hydrocarbon phase, which calls for first mixing the aqueous metal ion solution with an ethanolic solution of 1-dodecanethiol, and then extracting the coordination compounds formed between noble metal ions and 1-dodecanethiol into a non-polar organic solvent. A number of characterization techniques, including inductively coupled plasma atomic emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis demonstrate that this protocol could be applied to extract a wide variety of noble metal ions from water to dichloromethane with an efficiency of &gt;96%, and has high selectivity for the separation of the noble metal ions from other transition metals. It is therefore an attractive alternative for the extraction of noble metals from water, soil, or waste printed circuit boards. (C) 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.</p

    A clustering-optimized segmentation algorithm and application on food quality detection

    No full text
    Abstract For solving the problem of quality detection in the production and processing of stuffed food, this paper suggests a small neighborhood clustering algorithm to segment the frozen dumpling image on the conveyor belt, which can effectively improve the qualified rate of food quality. This method builds feature vectors by obtaining the image's attribute parameters. The image is segmented by a distance function between categories using a small neighborhood clustering algorithm based on sample feature vectors to calculate the cluster centers. Moreover, this paper gives the selection of optimal segmentation points and sampling rate, calculates the optimal sampling rate, suggests a search method for optimal sampling rate, as well as a validity judgment function for segmentation. Optimized small neighborhood clustering (OSNC) algorithm uses the fast frozen dumpling image as a sample for continuous image target segmentation experiments. The experimental results show the accuracy of defect detection of OSNC algorithm is 95.9%. Compared with other existing segmentation algorithms, OSNC algorithm has stronger anti-interference ability, faster segmentation speed as well as more efficiently saves key information ability. It can effectively improve some disadvantages of other segmentation algorithms
    • …
    corecore