146,076 research outputs found

    High-Order-Mode Soliton Structures in Two-Dimensional Lattices with Defocusing Nonlinearity

    Get PDF
    While fundamental-mode discrete solitons have been demonstrated with both self-focusing and defocusing nonlinearity, high-order-mode localized states in waveguide lattices have been studied thus far only for the self-focusing case. In this paper, the existence and stability regimes of dipole, quadrupole and vortex soliton structures in two-dimensional lattices induced with a defocusing nonlinearity are examined by the theoretical and numerical analysis of a generic envelope nonlinear lattice model. In particular, we find that the stability of such high-order-mode solitons is quite different from that with self-focusing nonlinearity. As a simple example, a dipole (``twisted'') mode soliton which may be stable in the focusing case becomes unstable in the defocusing regime. Our results may be relevant to other two-dimensional defocusing periodic nonlinear systems such as Bose-Einstein condensates with a positive scattering length trapped in optical lattices.Comment: 14 pages, 10 figure

    Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse

    Full text link
    Using multi-dimensional particle-in-cell (PIC) simulations we study ion acceleration from a foil irradiated by a circularly polarized laser pulse at 1022W/cm^2 intensity. When the foil is shaped initially in the transverse direction to match the laser intensity profile, the center part of the target can be uniformly accelerated for a longer time compared to a usual flat target. Target deformation and undesirable plasma heating are effectively suppressed. The final energy spectrum of the accelerated ion beam is improved dramatically. Collimated GeV quasi-mono-energetic ion beams carrying as much as 18% of the laser energy are observed in multi-dimensional simulations. Radiation damping effects are also checked in the simulations.Comment: 4 pages, 4 figure

    Investigation of the energy dependence of the orbital light curve in LS 5039

    Full text link
    LS 5039 is so far the best studied γ\gamma-ray binary system at multi-wavelength energies. A time resolved study of its spectral energy distribution (SED) shows that above 1 keV its power output is changing along its binary orbit as well as being a function of energy. To disentangle the energy dependence of the power output as a function of orbital phase, we investigated in detail the orbital light curves as derived with different telescopes at different energy bands. We analysed the data from all existing \textit{INTEGRAL}/IBIS/ISGRI observations of the source and generated the most up-to-date orbital light curves at hard X-ray energies. In the γ\gamma-ray band, we carried out orbital phase-resolved analysis of \textit{Fermi}-LAT data between 30 MeV and 10 GeV in 5 different energy bands. We found that, at ≲\lesssim100 MeV and ≳\gtrsim1 TeV the peak of the γ\gamma-ray emission is near orbital phase 0.7, while between ∼\sim100 MeV and ∼\sim1 GeV it moves close to orbital phase 1.0 in an orbital anti-clockwise manner. This result suggests that the transition region in the SED at soft γ\gamma-rays (below a hundred MeV) is related to the orbital phase interval of 0.5--1.0 but not to the one of 0.0--0.5, when the compact object is "behind" its companion. Another interesting result is that between 3 and 20 GeV no orbital modulation is found, although \textit{Fermi}-LAT significantly (∼\sim18σ\sigma) detects LS 5039. This is consistent with the fact that at these energies, the contributions to the overall emission from the inferior conjunction phase region (INFC, orbital phase 0.45 to 0.9) and from the superior conjunction phase region (SUPC, orbital phase 0.9 to 0.45) are equal in strength. At TeV energies the power output is again dominant in the INFC region and the flux peak occurs at phase ∼\sim0.7.Comment: 7 pages, 6 figures, accepted for publication in MNRA

    Subdwarf B stars from the common envelope ejection channel

    Full text link
    From the canonical binary scenario, the majority of sdBs are produced from low-mass stars with degenerate cores where helium is ignited in a way of flashes. Due to numerical difficulties, the models of produced sdBs are generally constructed from more massive stars with non-degenerate cores, leaving several uncertainties on the exact characteristics of sdB stars. Employing MESA, we systematically studied the characteristics of sdBs produced from the common envelope (CE) ejection channel, and found that the sdB stars produced from the CE ejection channel appear to form two distinct groups on the effective temperature-gravity diagram. One group (the flash-mixing model) almost has no H-rich envelope and crows at the hottest temperature end of the extremely horizontal branch (EHB), while the other group has significant H-rich envelope and spreads over the whole canonical EHB region. The key factor for the dichotomy of the sdB properties is the development of convection during the first helium flash, which is determined by the interior structure of the star after the CE ejection. For a given initial stellar mass and a given core mass at the onset of the CE, if the CE ejection stops early, the star has a relatively massive H-rich envelope, resulting in a canonical sdB generally. The fact of only a few short-orbital-period sdB binaries being in the flash-mixing sdB region and the lack of He-rich sdBs in short-orbital-period binaries indicate that the flash mixing is not very often in the products of the CE ejection. A falling back process after the CE ejection, similar to that happened in nova, is an appropriate way of increasing the envelope mass, then prevents the flash mixing.Comment: accepted by A&A 12 pages, 11 figure

    Heavy Pentaquarks

    Full text link
    We construct the spin-flavor wave functions of the possible heavy pentaquarks containing an anti-charm or anti-bottom quark using various clustered quark models. Then we estimate the masses and magnetic moments of the JP=12+J^P={1\over 2}^+ or 32+{3\over 2}^+ heavy pentaquarks. We emphasize the difference in the predictions of these models. Future experimental searches at BESIII, CLEOc, BELLE, and LEP may find these interesting states
    • …
    corecore