315 research outputs found
Research on Image Retrieval Optimization Based on Eye Movement Experiment Data
Satisfying a user's actual underlying needs in the image retrieval process is a difficult challenge facing image retrieval technology. The aim of this study is to improve the performance of a retrieval system and provide users with optimized search results using the feedback of eye movement. We analyzed the eye movement signals of the user’s image retrieval process from cognitive and mathematical perspectives. Data collected for 25 designers in eye tracking experiments were used to train and evaluate the model. In statistical analysis, eight eye movement features were statistically significantly different between selected and unselected groups of images (p < 0.05). An optimal selection of input features resulted in overall accuracy of the support vector machine prediction model of 87.16%. Judging the user’s requirements in the image retrieval process through eye movement behaviors was shown to be effective
Doxorubicin@Bcl-2 siRNA core@shell nanoparticles for synergistic anticancer chemotherapy
Acquired drug resistance in malignant
tumors seriously hinders
effective chemotherapy against cancer. The main mechanisms of drug
resistance include decreased drug influx, increased drug efflux, as
well as antiapoptotic defense behavior in cancerous cells. To overcome
these issues, we
have designed a nanomedicine composed of pure doxorubicin (DOX) as
the core and B-cell lymphoma-2 (Bcl-2) siRNA as the shell for synergistic
cancer treatment. Between the core and shell, polyethylene glycol
(PEG) and polyethylenimine (PEI) are employed to increase the stability
of the core DOX NPs and facilitate siRNA coating, respectively. In
this design, the siRNA is able to inhibit the expression of Bcl-2
protein which has a role of protecting cancer cells from apoptosis.
DOX not only is for anticancer therapy but also acts as a nanocarrier
for Bcl-2 siRNA delivery. Our studies show that Bcl-2 siRNA and DOX
are efficiently delivered into tumor cells and tumor tissues, and
such a codelivery nanosystem possesses synergistic effects on tumor
inhibition, enabling
significantly enhanced antitumor outcome. This work demonstrates that
the codelivery of tumor-suppressive Bcl-2 siRNA and chemotherapeutic
agents without
using an excipient material as a drug carrier represents a promising
therapy for enhanced cancer therapy
Variable-Based Fault Localization via Enhanced Decision Tree
Fault localization, aiming at localizing the root cause of the bug under
repair, has been a longstanding research topic. Although many approaches have
been proposed in the last decades, most of the existing studies work at
coarse-grained statement or method levels with very limited insights about how
to repair the bug (granularity problem), but few studies target the
finer-grained fault localization. In this paper, we target the granularity
problem and propose a novel finer-grained variable-level fault localization
technique. Specifically, we design a program-dependency-enhanced decision tree
model to boost the identification of fault-relevant variables via
discriminating failed and passed test cases based on the variable values. To
evaluate the effectiveness of our approach, we have implemented it in a tool
called VARDT and conducted an extensive study over the Defects4J benchmark. The
results show that VARDT outperforms the state-of-the-art fault localization
approaches with at least 247.8% improvements in terms of bugs located at Top-1,
and the average improvements are 330.5%.
Besides, to investigate whether our finer-grained fault localization result
can further improve the effectiveness of downstream APR techniques, we have
adapted VARDT to the application of patch filtering, where VARDT outperforms
the state-of-the-art PATCH-SIM by filtering 26.0% more incorrect patches. The
results demonstrate the effectiveness of our approach and it also provides a
new way of thinking for improving automatic program repair techniques
Carrier-free nanodrugs for safe and effective cancer treatment
Clinical applications of many anti-cancer drugs are restricted due to their hydrophobic nature, requiring use of harmful organic solvents for administration, and poor selectivity and pharmacokinetics resulting in off-target toxicity and inefficient therapies. A wide variety of carrier-based nanoparticles have been developed to tackle these issues, but such strategies often fail to encapsulate drug efficiently and require significant amounts of inorganic and/or organic nanocarriers which may cause toxicity problems in the long term. Preparation of nano-formulations for the delivery of water insoluble drugs without using carriers is thus desired, requiring elegantly designed strategies for products with high quality, stability and performance. These strategies include simple self-assembly or involving chemical modifications via coupling drugs together or conjugating them with various functional molecules such as lipids, carbohydrates and photosensitizers. During nanodrugs synthesis, insertion of redox-responsive linkers and tumor targeting ligands endows them with additional characteristics like on-target delivery, and conjugation with immunotherapeutic reagents enhances immune response alongside therapeutic efficacy. This review aims to summarize the methods of making carrier-free nanodrugs from hydrophobic drug molecules, evaluating their performance, and discussing the advantages, challenges, and future development of these strategies
A memristive non-smooth dynamical system with coexistence of bimodule periodic oscillation
© 2022 Elsevier GmbH. All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1016/j.aeue.2022.154279In order to explore the bursting oscillations and the formation mechanism of memristive non-smooth systems, a third-order memristor model and an external periodic excitation are introduced into a non-smooth dynamical system, and a novel 4D memristive non-smooth system with two-timescale is established. The system is divided into two different subsystems by a non-smooth interface, which can be used to simulate the scenario where a memristor encounters a non-smooth circuit in practical application circuits. Three different bursting patterns and bifurcation mechanisms are analyzed with the time series, the corresponding phase portraits, the equilibrium bifurcation diagrams, and the transformed phase portraits. It is pointed that not only the stability of the equilibrium trajectory but also the non-smooth interface may influence the bursting phenomenon, resulting in the sudden jumping of the trajectory and non-smooth bifurcation at the non-smooth interface. In particular, the coexistence of bimodule periodic oscillations at the non-smooth interface can be observed in this system. Finally, the correctness of the theoretical analysis is well verified by the numerical simulation and Multisim circuit simulation. This paper is of great significance for the future analysis and engineering application of the memristor in non-smooth circuits.Peer reviewe
- …