127 research outputs found

    Fan Localisation in the Chinese Overwatch Game Community: Conflicts about the Information Transmission

    Get PDF

    Your Smart Home Can't Keep a Secret: Towards Automated Fingerprinting of IoT Traffic with Neural Networks

    Get PDF
    The IoT (Internet of Things) technology has been widely adopted in recent years and has profoundly changed the people's daily lives. However, in the meantime, such a fast-growing technology has also introduced new privacy issues, which need to be better understood and measured. In this work, we look into how private information can be leaked from network traffic generated in the smart home network. Although researchers have proposed techniques to infer IoT device types or user behaviors under clean experiment setup, the effectiveness of such approaches become questionable in the complex but realistic network environment, where common techniques like Network Address and Port Translation (NAPT) and Virtual Private Network (VPN) are enabled. Traffic analysis using traditional methods (e.g., through classical machine-learning models) is much less effective under those settings, as the features picked manually are not distinctive any more. In this work, we propose a traffic analysis framework based on sequence-learning techniques like LSTM and leveraged the temporal relations between packets for the attack of device identification. We evaluated it under different environment settings (e.g., pure-IoT and noisy environment with multiple non-IoT devices). The results showed our framework was able to differentiate device types with a high accuracy. This result suggests IoT network communications pose prominent challenges to users' privacy, even when they are protected by encryption and morphed by the network gateway. As such, new privacy protection methods on IoT traffic need to be developed towards mitigating this new issue

    Quantum Gaussian process regression

    Full text link
    In this paper, a quantum algorithm based on gaussian process regression model is proposed. The proposed quantum algorithm consists of three sub-algorithms. One is the first quantum subalgorithm to efficiently generate mean predictor. The improved HHL algorithm is proposed to obtain the sign of outcomes. Therefore, the terrible situation that results is ambiguous in terms of original HHL algorithm is avoided, which makes whole algorithm more clear and exact. The other is to product covariance predictor with same method. Thirdly, the squared exponential covariance matrices are prepared that annihilation operator and generation operator are simulated by the unitary linear decomposition Hamiltonian simulation and kernel function vectors is generated with blocking coding techniques on covariance matrices. In addition, it is shown that the proposed quantum gaussian process regression algorithm can achieve quadratic faster over the classical counterpart

    Animate-A-Story: Storytelling with Retrieval-Augmented Video Generation

    Full text link
    Generating videos for visual storytelling can be a tedious and complex process that typically requires either live-action filming or graphics animation rendering. To bypass these challenges, our key idea is to utilize the abundance of existing video clips and synthesize a coherent storytelling video by customizing their appearances. We achieve this by developing a framework comprised of two functional modules: (i) Motion Structure Retrieval, which provides video candidates with desired scene or motion context described by query texts, and (ii) Structure-Guided Text-to-Video Synthesis, which generates plot-aligned videos under the guidance of motion structure and text prompts. For the first module, we leverage an off-the-shelf video retrieval system and extract video depths as motion structure. For the second module, we propose a controllable video generation model that offers flexible controls over structure and characters. The videos are synthesized by following the structural guidance and appearance instruction. To ensure visual consistency across clips, we propose an effective concept personalization approach, which allows the specification of the desired character identities through text prompts. Extensive experiments demonstrate that our approach exhibits significant advantages over various existing baselines.Comment: Github: https://github.com/VideoCrafter/Animate-A-Story Project page: https://videocrafter.github.io/Animate-A-Stor

    DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors

    Full text link
    Animating a still image offers an engaging visual experience. Traditional image animation techniques mainly focus on animating natural scenes with stochastic dynamics (e.g. clouds and fluid) or domain-specific motions (e.g. human hair or body motions), and thus limits their applicability to more general visual content. To overcome this limitation, we explore the synthesis of dynamic content for open-domain images, converting them into animated videos. The key idea is to utilize the motion prior of text-to-video diffusion models by incorporating the image into the generative process as guidance. Given an image, we first project it into a text-aligned rich context representation space using a query transformer, which facilitates the video model to digest the image content in a compatible fashion. However, some visual details still struggle to be preserved in the resultant videos. To supplement with more precise image information, we further feed the full image to the diffusion model by concatenating it with the initial noises. Experimental results show that our proposed method can produce visually convincing and more logical & natural motions, as well as higher conformity to the input image. Comparative evaluation demonstrates the notable superiority of our approach over existing competitors.Comment: Project page: https://doubiiu.github.io/projects/DynamiCrafte

    EDMAE: An Efficient Decoupled Masked Autoencoder for Standard View Identification in Pediatric Echocardiography

    Full text link
    This paper introduces the Efficient Decoupled Masked Autoencoder (EDMAE), a novel self-supervised method for recognizing standard views in pediatric echocardiography. EDMAE introduces a new proxy task based on the encoder-decoder structure. The EDMAE encoder is composed of a teacher and a student encoder. The teacher encoder extracts the potential representation of the masked image blocks, while the student encoder extracts the potential representation of the visible image blocks. The loss is calculated between the feature maps output by the two encoders to ensure consistency in the latent representations they extract. EDMAE uses pure convolution operations instead of the ViT structure in the MAE encoder. This improves training efficiency and convergence speed. EDMAE is pre-trained on a large-scale private dataset of pediatric echocardiography using self-supervised learning, and then fine-tuned for standard view recognition. The proposed method achieves high classification accuracy in 27 standard views of pediatric echocardiography. To further verify the effectiveness of the proposed method, the authors perform another downstream task of cardiac ultrasound segmentation on the public dataset CAMUS. The experimental results demonstrate that the proposed method outperforms some popular supervised and recent self-supervised methods, and is more competitive on different downstream tasks.Comment: 15 pages, 5 figures, 8 tables, Published in Biomedical Signal Processing and Contro
    • …
    corecore