712 research outputs found
Enhanced multi-source data analysis for personalized sleep-wake pattern recognition and sleep parameter extraction
The file attached to this record is the author's final peer reviewed version.Sleep behavior is traditionally monitored with polysomnography, and sleep stage patterns are a key marker for sleep quality used to detect anomalies and diagnose diseases. With the growing demand for personalized healthcare and the prevalence of the Internet of Things, there is a trend to use everyday technologies for sleep behavior analysis at home, having the potential to eliminate expensive in-hospital monitoring. In this paper, we conceived a multi-source data mining approach to personalized sleep-wake pattern recog-nition which uses physiological data and personal information to facilitate ļ¬ne-grained detection. Physiological data includes actigraphy and heart rate variability and personal data makes use of gender, health status and race infor-mation which are known inļ¬uence factors. Moreover, we developed a personal-ized sleep parameter extraction technique fused with the sleep-wake approach, achieving personalized instead of static thresholds for decision-making. Results show that the proposed approach improves the accuracy of sleep and wake stage recognition, therefore, oļ¬ers a new solution for personalized sleep-based health monitoring
Towards a service-oriented architecture for a mobile assistive system with real-time environmental sensing
Dalian Key Lab. of Smart Medical and Healthcare, Computer Science Department, Dalian University, China,With the growing aging population, age-related diseases have increased considerably over the years. In response to these, ambient assistive living (AAL) systems are being developed and are continually evolving to enrich and support independent living. While most researchers investigate robust activity recognition (AR) techniques, this paper focuses on some of the architectural challenges of the AAL systems. This work proposes a system architecture that fuses varying software design patterns and integrates readily available hardware devices to create wireless sensor networks for real-time applications. The system architecture brings together the service-oriented architecture (SOA), semantic web technologies, and other methods to address some of the shortcomings of the preceding system implementations using off-the-shelf and open source components. In order to validate the proposed architecture, a prototype is developed and tested positively to recognize basic user activities in real time. The system provides a base that can be further extended in many areas of AAL systems, including composite AR
An Open Internet of Things System Architecture Based on Software-Defined Device
The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The Internet of Things(IoT) connects more and more devices and supports an ever-growing diversity of applications. The heterogeneity of the cross-industry and cross-platform device resources is one of the main challenges to realize the unified management and information sharing, ultimately the large-scale uptake of the IoT. Inspired by software-defined networking(SDN), we propose the concept of software-defined device(SDD) and further elaborate its definition and operational mechanism from the perspective of cyber-physical mapping. Based on the device-as-a-software concept, we develop an open Internet of Things system architecture which decouples upper-level applications from the underlying physical devices through the SDD mechanism. A logically centralized controller is designed to conveniently manage physical devices and flexibly provide the device discovery service and the device control interfaces for various application requests. We also describe an application use scenario which illustrates that the SDD-based system architecture can implement the unified management, sharing, reusing, recombining and modular customization of device resources in multiple applications, and the ubiquitous IoT applications can be interconnected and intercommunicated on the shared physical devices
A Generic Framework for Constraint-Driven Data Selection in Mobile Crowd Photographing
The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Mobile crowd photographing (MCP) is an emerging area of interest for researchers as the built-in cameras of mobile devices are becoming one of the commonly used visual logging approaches in our daily lives. In order to meet diverse MCP application requirements and constraints of sensing targets, a multifacet task model should be defined for a generic MCP data collection framework. Furthermore, MCP collects pictures in a distributed way in which a large number of contributors upload pictures whenever and wherever it is suitable. This inevitably leads to evolving picture streams. This paper investigates the multiconstraint-driven data selection problem in MCP picture aggregation and proposes a pyramid-tree (PTree) model which can efficiently select an optimal subset from the evolving picture streams based on varied coverage needs of MCP tasks. By utilizing the PTree model in a generic MCP data collection framework, which is called CrowdPic, we test and evaluate the effectiveness, efficiency, and flexibility of the proposed framework through crowdsourcing-based and simulation-based experiments. Both the theoretical analysis and simulation results indicate that the PTree-based framework can effectively select a subset with high utility coverage and low redundancy ratio from the streaming data. The overall framework is also proved flexible and applicable to a wide range of MCP task scenarios
- ā¦