313 research outputs found

    Nanofluids

    Get PDF

    Exploring Color Invariance through Image-Level Ensemble Learning

    Full text link
    In the field of computer vision, the persistent presence of color bias, resulting from fluctuations in real-world lighting and camera conditions, presents a substantial challenge to the robustness of models. This issue is particularly pronounced in complex wide-area surveillance scenarios, such as person re-identification and industrial dust segmentation, where models often experience a decline in performance due to overfitting on color information during training, given the presence of environmental variations. Consequently, there is a need to effectively adapt models to cope with the complexities of camera conditions. To address this challenge, this study introduces a learning strategy named Random Color Erasing, which draws inspiration from ensemble learning. This strategy selectively erases partial or complete color information in the training data without disrupting the original image structure, thereby achieving a balanced weighting of color features and other features within the neural network. This approach mitigates the risk of overfitting and enhances the model's ability to handle color variation, thereby improving its overall robustness. The approach we propose serves as an ensemble learning strategy, characterized by robust interpretability. A comprehensive analysis of this methodology is presented in this paper. Across various tasks such as person re-identification and semantic segmentation, our approach consistently improves strong baseline methods. Notably, in comparison to existing methods that prioritize color robustness, our strategy significantly enhances performance in cross-domain scenarios. The code available at \url{https://github.com/layumi/Person\_reID\_baseline\_pytorch/blob/master/random\_erasing.py} or \url{https://github.com/finger-monkey/Data-Augmentation}

    Symmetries and Local Conservation Laws of Variational Schemes for the Surface Plasmon Polaritons

    Get PDF
    The relation between symmetries and local conservation laws, known as Noether's theorem, plays an important role in modern theoretical physics. As a discrete analog of the differentiable physical system, a good numerical scheme should admit the discrete local conservation laws and inherent mathematical structures. A class of variational schemes constructed for the hydrodynamic-electrodynamic model of lossless free-electron gas in a quasi-neutral background shows good properties in secular simulations of surface plasmon polaritons [Q. Chen et al., Phys. Rev. E 99, 023313 (2019)]. We show the discrete local conservation laws admitted by these schemes. Based on the gauge symmetry of the discrete action functional, a discrete charge conservation law is realized locally, which is consistent with the discrete Euler-Lagrange equations obtained from the variational schemes. Based on the discrete Euler-Lagrange equations, discrete local momentum and energy conservation laws are derived directly, which are rigorous in theory. The preservation of the discrete local conservation laws and Lagrangian symplectic structure ensure that the numerical scheme is correct in physics.Comment: 15 page

    Focused ultrasound for safe and effective release of brain tumor biomarkers into the peripheral circulation

    Get PDF
    The development of noninvasive approaches for brain tumor diagnosis and monitoring continues to be a major medical challenge. Although blood-based liquid biopsy has received considerable attention in various cancers, limited progress has been made for brain tumors, at least partly due to the hindrance of tumor biomarker release into the peripheral circulation by the blood-brain barrier. Focused ultrasound (FUS) combined with microbubbles induced BBB disruption has been established as a promising technique for noninvasive and localized brain drug delivery. Building on this established technique, we propose to develop FUS-enabled liquid biopsy technique (FUS-LBx) to enhance the release of brain tumor biomarkers (e.g., DNA, RNA, and proteins) into the circulation. The objective of this study was to demonstrate that FUS-LBx could sufficiently increase plasma levels of brain tumor biomarkers without causing hemorrhage in the brain. Mice with orthotopic implantation of enhanced green fluorescent protein (eGFP)-transfected murine glioma cells were treated using magnetic resonance (MR)-guided FUS system in the presence of systemically injected microbubbles at three peak negative pressure levels (0.59, 1.29, and 1.58 MPa). Plasma eGFP mRNA levels were quantified with the quantitative polymerase chain reaction (qPCR). Contrast-enhanced MR images were acquired before and after the FUS sonication. FUS at 0.59 MPa resulted in an increased plasma eGFP mRNA level, comparable to those at higher acoustic pressures (1.29 MPa and 1.58 MPa). Microhemorrhage density associated with FUS at 0.59 MPa was significantly lower than that at higher acoustic pressures and not significantly different from the control group. MRI analysis revealed that post-sonication intratumoral and peritumoral hyperenhancement had strong correlations with the level of FUS-induced biomarker release and the extent of hemorrhage. This study suggests that FUS-LBx could be a safe and effective brain-tumor biomarker release technique, and MRI could be used to develop image-guided FUS-LBx

    Light-emitting diode spectra modify nutritional status, physiological response, and secondary metabolites in Ficus hirta and Alpinia oxyphylla

    Get PDF
    Lighting spectrum is one of the key factors that determine biomass production and secondary-metabolism accumulation in medicinal plants under artificial cultivation conditions. Ficus hirta and Alpinia oxyphylla seedlings were cultured with blue (10% red, 10% green, 70% blue), green (20% red, 10% green, 30% blue), and red-enriched (30% red, 10% green, 20% blue) lights in a wide bandwidth of 400-700 nm. F. hirta seedlings had lower diameter, fine root length, leaf area, biomass, shoot nutrient (N) and phosphorus concentrations in the blue-light spectrum compared to the red- and green-light spectra. In contrast, A. oxyphylla seedlings showed significantly higher concentrations of foliar flavonoids and saponins in red-light spectrum with rare responses in N, chlorophyll, soluble sugars, and starch concentrations. F. hirta is easily and negatively impacted by blue-light spectrum but A. oxyphylla is suitably used to produce flavonoid and saponins in red-light spectrum across a wide bandwidth
    • …
    corecore