189 research outputs found
Effect of Milling on the Properties of High Permeability Mn-Zn Ferrite Powders
AbstractHigh permeability Mn-Zn ferrites with broad frequency characteristic were prepared by the traditional ceramic method using the pre-sintering powders of Mn-Zn ferrite wastes. ICP Atomic Emission Spectrophotometer, scanning electron microscopy (SEM), Particle Sizer and LCR broadband digital bridge were used to investigate the influence of milling on the microstructure and properties of sintered Mn-Zn ferrite. During the milling, the impurities such as silicon and chromium were introduced into the powders as using steel balls. The particle size of powders decreased to a †minimum size with the increasing of milling time. As the particle size after milling was about 1 um, the initial permeability of Mn-Zn ferrites with small internal porosity, high density and uniform structure could reach 10000. Furthermore, the value were unaffected by the change in frequency 0 to 150 kHz
Spin transport and accumulation in the persistent photoconductor AlGaAs
Electrical spin transport and accumulation have been measured in highly Si
doped Al0.3Ga0.7As utilizing a lateral spin transport device. Persistent
photoconductivity allows for the tuning of the effective carrier density of the
channel material in situ via photodoping. Hanle effect measurements are
completed at various carrier densities and the measurements yield spin
lifetimes on the order of nanoseconds, an order of magnitude smaller than in
bulk GaAs. These measurements illustrate that this methodology can be used to
obtain a detailed description of how spin lifetimes depend on carrier density
in semiconductors across the metal-insulator transition
The order of expression is a key factor in the production of active transglutaminase in Escherichia coli by co-expression with its pro-peptide
<p>Abstract</p> <p>Background</p> <p><it>Streptomyces </it>transglutaminase (TGase) is naturally synthesized as zymogen (pro-TGase), which is then processed to produce active enzyme by the removal of its N-terminal pro-peptide. This pro-peptide is found to be essential for overexpression of soluble TGase in <it>E. coli</it>. However, expression of pro-TGase by <it>E. coli </it>requires protease-mediated activation <it>in vitro</it>. In this study, we developed a novel co- expression method for the direct production of active TGase in <it>E. coli</it>.</p> <p>Results</p> <p>A TGase from <it>S. hygroscopicus </it>was expressed in <it>E. coli </it>only after fusing with the pelB signal peptide, but fusion with the signal peptide induced insoluble enzyme. Therefore, alternative protocol was designed by co-expressing the TGase and its pro-peptide as independent polypeptides under a single T7 promoter using vector pET-22b(+). Although the pro-peptide was co-expressed, the TGase fused without the signal peptide was undetectable in both soluble and insoluble fractions of the recombinant cells. Similarly, when both genes were expressed in the order of the TGase and the pro-peptide, the solubility of TGase fused with the signal peptide was not improved by the co-expression with its pro-peptide. Interestingly, active TGase was only produced by the cells in which the pro-peptide and the TGase were fused with the signal peptide and sequentially expressed. The purified recombinant and native TGase shared the similar catalytic properties.</p> <p>Conclusions</p> <p>Our results indicated that the pro-peptide can assist correct folding of the TGase inter-molecularly in <it>E. coli</it>, and expression of pro-peptide prior to that of TGase was essential for the production of active TGase. The co-expression strategy based on optimizing the order of gene expression could be useful for the expression of other functional proteins that are synthesized as a precursor.</p
Adsorption–desorption behavior of malachite green by potassium permanganate pre-oxidation polyvinyl chloride microplastics
Microplastics (MPs) and the typical hydrophilic organic pollutant Malachite green (MG) are frequently detected in sewage treatment plants. Potassium permanganate (KMnO4) pre-oxidation is an economical and effective technology in wastewater treatment. It is important to study the surface physicochemical characteristics of MPs and understand their fate in wastewater treatment plants after pre-oxidation. In this study, Polyvinyl chloride (PVC) MPs were treated by single and composite KMnO4 pre-oxidation with different pH values. After the pre-oxidation treatment, the appearance of Osingle bondMn spectra and surface nanoparticles indicated the oxides (MnO2) were produced on the MPs surface. Moreover, the adhesion of MnO2 is helpful to improve the hydrophilicity and adsorption capacity of MG. The adsorption capacity of pristine PVC for MG was 2.6 mg/g. But the adsorption capacity increased to 7.0 mg/g for single oxidation and 140.7 mg/g for composite oxidation, respectively. The desorption experiment results indicate the pre-oxidation process could reduce the release efficiency of MG from the PVC MPs due to the better binding of surface MnO2 nanoparticles to MG. However, the total desorption capacity is still high. which illustrates that there is a high potential risk of MG which can transfer from the surface of the PVC MPs to the gastrointestinal fluids.publishedVersio
- …