4,233 research outputs found

    Concurrence of arbitrary dimensional bipartite quantum states

    Full text link
    We derive an analytical lower bound for the concurrence of a bipartite quantum state in arbitrary dimension. A functional relation is established relating concurrence, the Peres-Horodecki criterion and the realignment criterion. We demonstrate that our bound is exact for some mixed quantum states. The significance of our method is illustrated by giving a quantitative evaluation of entanglement for many bound entangled states, some of which fail to be identified by the usual concurrence estimation method.Comment: 4 pages, published versio

    Entanglement of Formation of Bipartite Quantum States

    Full text link
    We give an explicit tight lower bound for the entanglement of formation for arbitrary bipartite mixed states by using the convex hull construction of a certain function. This is achieved by revealing a novel connection among the entanglement of formation, the well-known Peres-Horodecki and realignment criteria. The bound gives a quite simple and efficiently computable way to evaluate quantitatively the degree of entanglement for any bipartite quantum state.Comment: 4 page

    Stabilization and current-induced motion of antiskyrmion in the presence of anisotropic Dzyaloshinskii-Moriya interaction

    Full text link
    Topological defects in magnetism have attracted great attention due to fundamental research interests and potential novel spintronics applications. Rich examples of topological defects can be found in nanoscale non-uniform spin textures, such as monopoles, domain walls, vortices, and skyrmions. Recently, skyrmions stabilized by the Dzyaloshinskii-Moriya interaction have been studied extensively. However, the stabilization of antiskyrmions is less straightforward. Here, using numerical simulations we demonstrate that antiskyrmions can be a stable spin configuration in the presence of anisotropic Dzyaloshinskii-Moriya interaction. We find current-driven antiskyrmion motion that has a transverse component, namely antiskyrmion Hall effect. The antiskyrmion gyroconstant is opposite to that for skyrmion, which allows the current-driven propagation of coupled skyrmion-antiskyrmion pairs without apparent skyrmion Hall effect. The antiskyrmion Hall angle strongly depends on the current direction, and a zero antiskyrmion Hall angle can be achieved at a critic current direction. These results open up possibilities to tailor the spin topology in nanoscale magnetism, which may be useful in the emerging field of skyrmionics.Comment: 31 pages, 6 figures, to appear in Physical Review

    Study the Heavy Molecular States in Quark Model with Meson Exchange Interaction

    Full text link
    Some charmonium-like resonances such as X(3872) can be interpreted as possible D()D()D^{(*)}D^{(*)} molecular states. Within the quark model, we study the structure of such molecular states and the similar B()B()B^{(*)}B^{(*)} molecular states by taking into account of the light meson exchange (π\pi, η\eta, ρ\rho, ω\omega and σ\sigma) between two light quarks from different mesons

    Entanglement in SO(3)-invariant bipartite quantum systems

    Full text link
    The structure of the state spaces of bipartite (N tensor N) quantum systems which are invariant under product representations of the group SO(3) of three-dimensional proper rotations is analyzed. The subsystems represent particles of arbitrary spin j which transform according to an irreducible representation of the rotation group. A positive map theta is introduced which describes the time reversal symmetry of the local states and which is unitarily equivalent to the transposition of matrices. It is shown that the partial time reversal transformation theta_2 = (I tensor theta) acting on the composite system can be expressed in terms of the invariant 6-j symbols introduced by Wigner into the quantum theory of angular momentum. This fact enables a complete geometrical construction of the manifold of states with positive partial transposition and of the sets of separable and entangled states of (4 tensor 4) systems. The separable states are shown to form a three-dimensional prism and a three-dimensional manifold of bound entangled states is identified. A positive maps is obtained which yields, together with the time reversal, a necessary and sufficient condition for the separability of states of (4 tensor 4) systems. The relations to the reduction criterion and to the recently proposed cross norm criterion for separability are discussed.Comment: 15 pages, 3 figure
    corecore