6 research outputs found

    Vector adaptive predictive coder for speech and audio

    Get PDF
    A real-time vector adaptive predictive coder which approximates each vector of K speech samples by using each of M fixed vectors in a first codebook to excite a time-varying synthesis filter and picking the vector that minimizes distortion. Predictive analysis for each frame determines parameters used for computing from vectors in the first codebook zero-state response vectors that are stored at the same address (index) in a second codebook. Encoding of input speech vectors s.sub.n is then carried out using the second codebook. When the vector that minimizes distortion is found, its index is transmitted to a decoder which has a codebook identical to the first codebook of the decoder. There the index is used to read out a vector that is used to synthesize an output speech vector s.sub.n. The parameters used in the encoder are quantized, for example by using a table, and the indices are transmitted to the decoder where they are decoded to specify transfer characteristics of filters used in producing the vector s.sub.n from the receiver codebook vector selected by the vector index transmitted

    Speech coding at 4800 bps for mobile satellite communications

    Get PDF
    A speech compression project has recently been completed to develop a speech coding algorithm suitable for operation in a mobile satellite environment aimed at providing telephone quality natural speech at 4.8 kbps. The work has resulted in two alternative techniques which achieve reasonably good communications quality at 4.8 kbps while tolerating vehicle noise and rather severe channel impairments. The algorithms are embodied in a compact self-contained prototype consisting of two AT and T 32-bit floating-point DSP32 digital signal processors (DSP). A Motorola 68HC11 microcomputer chip serves as the board controller and interface handler. On a wirewrapped card, the prototype's circuit footprint amounts to only 200 sq cm, and consumes about 9 watts of power

    ADPCM Using a Second-order Switched Predictor and Adaptive Quantizer

    No full text
    Adaptive differential pulse code modulation (ADPCM) with forward gain-adaptive quantizer and second-order switched predictor based on correlation is presented in this article. Predictor consists of a bank of predetermined predictors for each block of speech samples, avoiding the need to solve, or quantize predictor coefficients during the coding process. The adaptation consists of switching to one of this predictors based on the values of the first and second order correlation coefficients. The theoretical model is generalization of the DPCM with the first order switched predictor for an arbitrary prediction order. Experimental results for ADPCM with the second-order four/eight state switched prediction based on correlation are provided
    corecore