25 research outputs found

    Renal Replacement Therapy and Incremental Hemodialysis for Veterans with Advanced Chronic Kidney Disease.

    Get PDF
    Each year approximately 13,000 Veterans transition to maintenance dialysis, mostly in the traditional form of thrice-weekly hemodialysis from the start. Among >6000 dialysis units nationwide, there are currently approximately 70 Veterans Affairs (VA) dialysis centers. Given this number of VA dialysis centers and their limited capacity, only 10% of all incident dialysis Veterans initiate treatment in a VA center. Evidence suggests that, among Veterans, the receipt of care within the VA system is associated with favorable outcomes, potentially because of the enhanced access to healthcare resources. Data from the United States Renal Data System Special Study Center "Transition-of-Care-in-CKD" suggest that Veterans who receive dialysis in a VA unit exhibit greater survival compared with the non-VA centers. Substantial financial expenditures arise from the high volume of outsourced care and higher dialysis reimbursement paid by the VA than by Medicare to outsourced providers. Given the exceedingly high mortality and abrupt decline in residual kidney function (RKF) in the first dialysis year, it is possible that incremental transition to dialysis through an initial twice-weekly hemodialysis regimen might preserve RKF, prolong vascular access longevity, improve patients' quality of life, and be a more patient-centered approach, more consistent with "personalized" dialysis. Broad implementation of incremental dialysis might also result in more Veterans receiving care within a VA dialysis unit. Controlled trials are needed to examine the safety and efficacy of incremental hemodialysis in Veterans and other populations; the administrative and health care as well as provider structure within the VA system would facilitate the performance of such trials

    The Obesity Paradox in Kidney Disease: How to Reconcile it with Obesity Management.

    No full text
    Obesity, a risk factor for de novo chronic kidney disease (CKD), confers survival advantages in advanced CKD. This so-called obesity paradox is the archetype of the reverse epidemiology of cardiovascular risks, in addition to the lipid, blood pressure, adiponectin, homocysteine, and uric acid paradoxes. These paradoxical phenomena are in sharp contradistinction to the known epidemiology of cardiovascular risks in the general population. In addition to advanced CKD, the obesity paradox has also been observed in heart failure, chronic obstructive lung disease, liver cirrhosis, and metastatic cancer, as well as in the elderly. These are populations in whom protein-energy wasting and inflammation are strong predictors of early death. Both larger muscle mass and higher body fat provide longevity in these patients, whereas thinner body habitus and weight loss are associated with higher mortality. Muscle mass appears to be superior to body fat in conferring an even greater survival. The obesity paradox may be the result of a time discrepancy between competing risk factors, i.e., overnutrition as the long-term killer versus undernutrition as the short-term killer. Hemodynamic stability of obesity, lipoprotein defense against circulating endotoxins, protective cytokine profiles, toxin sequestration of fat mass, and antioxidation of muscle may play important roles. Despite claims that obesity paradox is a statistical fallacy and a result of residual confounding, the consistency of data and other causality clues suggest a high biologic plausibility. Examining the causes and consequences of the obesity paradox may help discover important pathophysiologic mechanisms leading to improved outcomes in patients with CKD
    corecore