230 research outputs found

    Estrogen-Related Receptor β/NR3B2 Controls Epithelial Cell Fate and Endolymph Production by the Stria Vascularis

    Get PDF
    SummaryIn the mammalian inner ear, endolymph is produced and resorbed by a complex series of epithelia. We show here that estrogen-related receptor β (ERR-β; NR3B2), an orphan nuclear receptor, is specifically expressed in and controls the development of the endolymph-producing cells of the inner ear: the strial marginal cells in the cochlea and the vestibular dark cells in the ampulla and utricle. Nr3b2−/− strial marginal cells fail to express multiple ion channel and transporter genes, and they show a partial transformation toward the fate of the immediately adjacent Pendrin-expressing epithelial cells. In genetically mosaic mice, Nr3b2−/− strial marginal cells produce secondary alterations in gene expression in the underlying intermediate cells and a local loss of strial capillaries. A systematic comparison of transcripts in the WT versus Nr3b2−/− stria vascularis has identified a set of genes that is likely to play a role in the development and/or function of endolymph-producing epithelia

    Planetary gearbox remaining useful life estimation based on state space model

    Get PDF
    As planetary gearboxes are widely used in various kinds of engineering, the fault diagnosis and prognosis of planetary gearbox is very important. This paper proposes a remaining useful life estimation method based on state space model. The degradation process is assumed to be Gamma distribution. And experience maximization method and particle filter is used to estimate the parameters of state space model. A planetary gearbox life-cycle experiment is done to obtain the degradation data and verify the effectiveness of the proposed method

    A Resonance Model for Spontaneous Cortical Activity

    Full text link
    How human brain function emerges from structure has intrigued researchers for decades and numerous models have been put forward, yet none of them yields a close structure-function relation. Here we present a resonance model based on neuronal spike timing dependent plasticity (STDP) principle to describe the spontaneous cortical activity by incorporating the dynamic interactions between neuronal populations into a wave equation, which is able to accurately predict the resting brain functional connectivity (FC), including the resting-state networks. Besides, the proposed model provides strong theoretical and experimental evidences that the spontaneous dynamic coupling between brain regions fluctuates with a low frequency. Crucially, it is able to account for how the negative functional correlations emerge during resonance. We test the model with a large cohort of subjects (1038) from the Human Connectome Project (HCP) S1200 release in both time and frequency domain, which exhibits superior performance to existing eigen-decomposition models

    Model-aided Federated Reinforcement Learning for Multi-UAV Trajectory Planning in IoT Networks

    Full text link
    Deploying teams of cooperative unmanned aerial vehicles (UAVs) to harvest data from distributed Internet of Things (IoT) devices requires efficient trajectory planning and coordination algorithms. Multi-agent reinforcement learning (MARL) has emerged as an effective solution, but often requires extensive and costly real-world training data. In this paper, we propose a novel model-aided federated MARL algorithm to coordinate multiple UAVs on a data harvesting mission with limited knowledge about the environment, significantly reducing the real-world training data demand. The proposed algorithm alternates between learning an environment model from real-world measurements and federated QMIX training in the simulated environment. Specifically, collected measurements from the real-world environment are used to learn the radio channel and estimate unknown IoT device locations to create a simulated environment. Each UAV agent trains a local QMIX model in its simulated environment and continuously consolidates it through federated learning with other agents, accelerating the learning process and further improving training sample efficiency. Simulation results demonstrate that our proposed model-aided FedQMIX algorithm substantially reduces the need for real-world training experiences while attaining similar data collection performance as standard MARL algorithms.Comment: 7 pages, 2 figure

    Synthesis of Alkyl Substituted Dicyclohexano-18-crown-6 Homologues for Strontium Extraction in HNO3 Media

    Get PDF
    AbstractA series of dicyclohexano-18-crown-6 (DCH18C6) homologues containing different alkyl substituents were synthesized for a comparative study of the extraction ability towards strontium. The synthesis and the structure characterization of the intermediates and the products were detailed. The crown ether homologues were labeled as CX-DCH18C6 (X=3∼7), where the X represents the number of the carbon atoms in the alkyl substituents. The extraction ability of the CX-DCH18C6 samples towards strontium in solvent extraction system was investigated. The substituent effect of the samples was discussed, and the factors affecting the separation such as solvent, acidity and initial metal concentration were examined

    Novel hybrids of natural β-elemene bearing isopropanolamine moieties: synthesis, enhanced anticancer profile, and improved aqueous solubility

    Get PDF
    A series of novel β-elemene isopropanolamine derivatives were synthesized and evaluated for their antitumor activity. The results indicated that all of the compounds showed stronger antiproliferative activities than β-elemene as well as improved aqueous solubility. In particular dimer 6q showed the strongest cytotoxicity against four tumor cell lines (SGC-7901, HeLa, U87 and A549) with IC50 values ranging from 4.37 to 10.20 μM. Moreover, combination of 6q with cisplatin exhibited a synergistic effect on these cell lines with IC50 values ranging from 1.21 to 2.94 μM, and reversed the resistance of A549/DPP cells with an IC50 value of 2.52 μM. The mechanism study revealed that 6q caused cell cycle arrest at the G2 phase and induced apoptosis of SGC-7901 cells through a mitochondrial-dependent apoptotic pathway. Further in vivo study in H22 liver cancer xenograft mouse model validated the antitumor activity of 6q with a tumor inhibitory ratio (TIR) of 60.3%, which was higher than that of β-elemene (TIR, 49.1%) at a dose of 60 mg/kg. Altogether, the potent antitumor activity of 6qin vitro and in vivo warranted further preclinical investigation for potential anticancer chemotherapy

    Experiments and Fragility Analyses of Piping Systems Connected by Grooved Fit Joints With Large Deformability

    Get PDF
    Pipes with a diameter of 150 mm, also called DN150, are often connected by grooved fit joints and employed as stem pipelines, which are used to transport water vertically to different building stories and distribute it horizontally to different rooms. A large deformability is often required for the grooved fit joints to accommodate the deformation concentrated between adjacent stories during an earthquake. To this end, the grooved fit joint is often improved with a wider groove to achieve such a large deformability. However, its seismic performance has not been thoroughly studied yet. This study conducted quasi-static tests on twelve DN150 grooved fit joints, including four elbow joints and eight DN150-DN80 Tee joints. The mechanical behavior, rotational capacity and failure mode were examined and discussed. The test results indicate that the fracture of the grooved fitting and the pull-out of pipes from the grooved fitting are the major damage patterns at deformations larger than 0.1 rad. At small deformations of <0.06 rad, although slight abrasions and wear were observed on the contact surface between the galvanized steel pipe and the grooved fitting, they would not result in significant leakage. Three damage states are defined accordingly, and the fragility models are developed for different grooved fit joints based on test results. Finally, seismic fragility analysis of DN150 stem pipeline system in a 10-story building was conducted. It is demonstrated that the improved joints survive under the maximum credible earthquake and the leakage is highly unlikely to occur

    Experiments and Fragility Analyses of Piping Systems Connected by Grooved Fit Joints With Large Deformability

    Get PDF
    The pipes with diameter of 150mm, also called DN150, are often connected by grooved fit joints and employed as the stem pipelines, which are used to transport water vertically to different building stories and distribute it horizontally to different rooms. A large deformability is often required for the grooved fit joints to accommodate the deformation concentrated between adjacent stories during an earthquake. To this end, the grooved fit joint is often improved with a wider groove to achieve such a large deformability. However, its seismic performance has not been thoroughly studied yet. This study conducted quasi-static tests on twelve DN150 grooved fit joints, including four elbow joints and eight DN150-DN80 Tee joints. The mechanical behavior, rotational capacity and failure mode were examined and discussed. The test results indicate that the fracture of the grooved fitting and the pull-out of pipes from the grooved fitting are the major damage patterns at deformations larger than 0.1rad. At small deformations less than 0.06 rad, although slight abrasion and wear were observed on the contact surface between the galvanized steel pipe and the grooved fitting, they would not result in significant leakage. Three damage states are defined accordingly and the fragility models are developed for different grooved fit joints based on test results. Finally, seismic fragility analysis of DN150 stem pipeline system in a 10-story building was conducted. It is demonstrated that the improved joints survive under the maximum credible earthquake and the leakage is highly unlikely to occur. Document type: Articl
    • …
    corecore