283 research outputs found

    Knowledge-based Transfer Learning Explanation

    Get PDF
    Machine learning explanation can significantly boost machine learning's application in decision making, but the usability of current methods is limited in human-centric explanation, especially for transfer learning, an important machine learning branch that aims at utilizing knowledge from one learning domain (i.e., a pair of dataset and prediction task) to enhance prediction model training in another learning domain. In this paper, we propose an ontology-based approach for human-centric explanation of transfer learning. Three kinds of knowledge-based explanatory evidence, with different granularities, including general factors, particular narrators and core contexts are first proposed and then inferred with both local ontologies and external knowledge bases. The evaluation with US flight data and DBpedia has presented their confidence and availability in explaining the transferability of feature representation in flight departure delay forecasting.Comment: Accepted by International Conference on Principles of Knowledge Representation and Reasoning, 201

    Validating Sample Average Approximation Solutions with Negatively Dependent Batches

    Full text link
    Sample-average approximations (SAA) are a practical means of finding approximate solutions of stochastic programming problems involving an extremely large (or infinite) number of scenarios. SAA can also be used to find estimates of a lower bound on the optimal objective value of the true problem which, when coupled with an upper bound, provides confidence intervals for the true optimal objective value and valuable information about the quality of the approximate solutions. Specifically, the lower bound can be estimated by solving multiple SAA problems (each obtained using a particular sampling method) and averaging the obtained objective values. State-of-the-art methods for lower-bound estimation generate batches of scenarios for the SAA problems independently. In this paper, we describe sampling methods that produce negatively dependent batches, thus reducing the variance of the sample-averaged lower bound estimator and increasing its usefulness in defining a confidence interval for the optimal objective value. We provide conditions under which the new sampling methods can reduce the variance of the lower bound estimator, and present computational results to verify that our scheme can reduce the variance significantly, by comparison with the traditional Latin hypercube approach

    Target-oriented Sentiment Classification with Sequential Cross-modal Semantic Graph

    Full text link
    Multi-modal aspect-based sentiment classification (MABSC) is task of classifying the sentiment of a target entity mentioned in a sentence and an image. However, previous methods failed to account for the fine-grained semantic association between the image and the text, which resulted in limited identification of fine-grained image aspects and opinions. To address these limitations, in this paper we propose a new approach called SeqCSG, which enhances the encoder-decoder sentiment classification framework using sequential cross-modal semantic graphs. SeqCSG utilizes image captions and scene graphs to extract both global and local fine-grained image information and considers them as elements of the cross-modal semantic graph along with tokens from tweets. The sequential cross-modal semantic graph is represented as a sequence with a multi-modal adjacency matrix indicating relationships between elements. Experimental results show that the approach outperforms existing methods and achieves state-of-the-art performance on two standard datasets. Further analysis has demonstrated that the model can implicitly learn the correlation between fine-grained information of the image and the text with the given target. Our code is available at https://github.com/zjukg/SeqCSG.Comment: ICANN 2023, https://github.com/zjukg/SeqCS
    • …
    corecore