23 research outputs found

    Performance evaluation of the 8-inch MCP-PMT for Jinping Neutrino Experiment

    Full text link
    Jinping Neutrino Experiment plans to deploy a new type of 8-inch MCP-PMT with high photon detection efficiency for MeV-scale neutrino measurements. This work studies the performance of the MCP-PMTs, including the photon detection efficiency, the charge resolution of the single photoelectron, the transition time spread, single photoelectron response, rates of dark counts and after pulses. We find a long tail in the charge distribution, and combined with the high photon detection efficiency, the overall energy resolution sees substantial improvements. Those results will be provided as the inputs to detector simulation and design. Our results show that the new PMT satisfies all the requirements of the Jinping Neutrino Experiment

    Decreased Spontaneous Brain Activity and Functional Connectivity in Type 1 Diabetic Patients Without Microvascular Complications

    Get PDF
    Background/Aims: Type 1 diabetes mellitus (T1DM) has been proven to be associated with an increased risk of cognitive dysfunction. In this study, we aimed to investigate whether disrupted spontaneous activity and functional connectivity (FC) exist in T1DM patients using resting-state functional magnetic resonance imaging (rs-fMRI) and to detect the relationships of these parameters with cognitive impairment. Methods: T1DM patients (n=35) were compared with age-, sex-, and education level-matched healthy controls (n=50) through rs-fMRI. Using rs-fMRI professional software, we calculated the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and seed-based FC in the posterior cingulate cortex (PCC) to measure the spontaneous neural activity in the groups. The relationship between rs-fMRI data and cognitive performance was further investigated. Results: Compared with the healthy controls, T1DM patients showed significantly decreased ALFF values in the PCC and right inferior frontal gyrus (IFG), decreased ReHo values in the right middle frontal gyrus (MFG) and reduced FC between the PCC and the right MFG. Furthermore, a positive correlation was found between decreased ALFF values in the PCC and Rey-Osterrieth Complex Figure Test (CFT)-delay scores in T1DM patients (r=0.394, p=0.026). Moreover, the Trail Making Test-B (TMT-B) scores showed negative correlations with decreased ReHo values in the right MFG (r=-0.468, p=0.007) and reduced FC between the PCC and right MFG (r=-0.425, p=0.015). Conclusion: Our combined analyses revealed decreased spontaneous activity and FC mainly within the default mode network, which was correlated with specific impaired cognitive functioning in T1DM. This study thus elucidates the neurophysiological mechanisms underlying T1DM-related cognitive impairment and may serve as a reference for future clinical diagnosis

    A High-Resolution MRI Study of Relationship between Remodeling Patterns and Ischemic Stroke in Patients with Atherosclerotic Middle Cerebral Artery Stenosis

    Get PDF
    Purpose: Recently, high-resolution magnetic resonance imaging (HR-MRI) has been used to depict the wall characteristics of the intracranial arteries. The aim of this study was to explain the relationship between the remodeling patterns and acute ischemic stroke in patients with atherosclerotic middle cerebral artery (MCA) stenosis using HR-MRI.Materials and Methods: From August 2015 to May 2016, we prospectively screened 33 consecutive patients with unilateral MCA stenosis using time-to-flight MR angiography, including 15 patients with symptomatic MCA stenosis and 18 patients with asymptomatic MCA stenosis. Among them, 14 patients were diagnosed as positive remodeling (PR) and 19 as negative remodeling or non-remodeling. The cross-sectional images of the stenotic MCA wall on HR-MRI including T1WI, T2WI, and PDWI were compared between the symptomatic group and the asymptomatic group as well as the PR group and the non-PR group, based on the vessel area, lumen area, wall area, plaque area, degree of stenosis, remodeling index, and NIHSS score.Results: The symptomatic group had larger wall area (P = 0.040), plaque area (P<0.001), degree of stenosis (P = 0.038), remodeling index (P < 0.001), and NIHSS score (P = 0.003) as well as smaller lumen area (P = 0.001) than the asymptomatic group. In addition, more PR patients were observed in symptomatic group. The PR group had larger plaque area (P = 0.014) and NIHSS score (P = 0.037) than the non-PR group. Demographic and clinical characteristics between the symptomatic group and the asymptomatic group, the PR group and the non-PR group showed no statistical difference.Conclusion: The current study suggests that the HR-MRI has emerged as a promising tool to detect the characteristics of intracranial arteries wall and reveal the relationship between remodeling patterns and ischemic stroke. The PR is an unsafe remodeling way and is prone to cause acute ischemic stroke

    A Simple and Effective Unsupervised Word Segmentation Approach

    No full text
    In this paper, we propose a new unsupervised approach for word segmentation. The core idea of our approach is a novel word induction criterion called WordRank, which estimates the goodness of word hypotheses (character or phoneme sequences). We devise a method to derive exterior word boundary information from the link structures of adjacent word hypotheses and incorporate interior word boundary information to complete the model. In light of WordRank, word segmentation can be modeled as an optimization problem. A Viterbi-styled algorithm is developed for the search of the optimal segmentation. Extensive experiments conducted on phonetic transcripts as well as standard Chinese and Japanese data sets demonstrate the effectiveness of our approach. On the standard Brent version of Bernstein-Ratner corpora, our approach outperforms the state-of-the-art Bayesian models by more than 3%. Plus, our approach is simpler and more efficient than the Bayesian methods. Consequently, our approach is more suitable for real-world applications

    Analysis of DTI-Derived Tensor Metrics in Differential Diagnosis between Low-grade and High-grade Gliomas

    No full text
    Purpose: It is critical and difficult to accurately discriminate between high- and low-grade gliomas preoperatively. This study aimed to ascertain the role of several scalar measures in distinguishing high-grade from low-grade gliomas, especially the axial diffusivity (AD), radial diffusivity (RD), planar tensor (Cp), spherical tensor (Cs), and linear tensor (Cl) derived from diffusion tensor imaging (DTI).Materials and Methods: Fifty-three patients with pathologically confirmed brain gliomas (21 low-grade and 32 high-grade) were included. Contrast-enhanced T1-weighted images and DTI were performed in all patients. The AD, RD, Cp, Cs, and Cl values in the tumor zone, peritumoral edema zone, white matter (WM) adjacent to edema and contralateral normal-appearing white matter (NAWM) were calculated. The DTI parameters and tumor grades were statistically analyzed, and receiver operating characteristic (ROC) curve analysis was also performed.Results: The DTI metrics in the affected hemisphere showed significant differences from those in the NAWM, except for the AD values in the tumor zone and the RD values in WM adjacent to edema in the low-grade groups, as well as the Cp values in WM adjacent to edema in the high-grade groups. AD in the tumor zone as well as Cs and Cl in WM adjacent to edema revealed significant differences between the low- and high-grade gliomas. The areas under the curve (Az) of all three metrics were greater than 0.5 in distinguishing low-grade from high-grade gliomas by ROC curve analysis, and the best DTI metric was Cs in WM adjacent to edema (Az: 0.692).Conclusion: AD in the tumor zone as well as Cs and Cl in WM adjacent to edema will provide additional information to better classify gliomas and can be used as non-invasive reliable biomarkers in glioma grading

    Aberrant static and dynamic functional network connectivity in heart failure with preserved ejection fraction

    No full text
    Abstract Aims Heart failure may lead to brain functional alterations related to cognitive impairment. This study aimed to detect alterations of static functional network connectivity (FNC) and dynamic FNC in heart failure with preserved ejection fraction (HFpEF) and to estimate the association between the altered FNC and clinical features related to HFpEF. Methods and results The clinical and resting‐state functional magnetic resonance imaging (fMRI) data of HFpEF patients (n = 35) and healthy controls (HCs) (n = 35) were acquired at baseline. Resting‐state networks (RSNs) were established based on independent component analysis (ICA) and FNC analyses were performed. The associations between the FNC abnormalities and clinical features related to HFpEF were analysed. Compared with HCs, HFpEF patients showed decreased functional connectivity within the default mode network, left frontoparietal network, and right frontoparietal network and increased functional connectivity within the right frontoparietal network and visual network. Negative correlations were observed between decreased dynamic FNC and the left ventricular end‐diastolic diameter (LVDd) (r = −0.435, P = 0.015) as well as the left ventricular end‐systolic diameter (LVDs) (r = −0.443, P = 0.013). Conclusions The FNC disruption and altered temporal properties of functional dynamics in HFpEF patients may reflect the neural mechanisms of brain injury after HFpEF, which may deepen our understanding of the disease

    Cerebral Blood Flow and Its Connectivity Deficits in Mild Traumatic Brain Injury at the Acute Stage

    No full text
    Objective. The influence of cognitive impairment after mild traumatic brain injury (mTBI) on cerebral vascular perfusion has been widely concerned, yet the resting-state cerebral blood flow (CBF) connectivity alterations based on arterial spin labeling (ASL) in mild traumatic brain injury (mTBI) remain unclear. This study investigated region CBF and CBF connectivity features in acute mTBI patients, as well as the associations between CBF changes and cognitive impairment. Materials and Methods. Forty-five acute mTBI patients and 42 health controls underwent pseudocontinuous arterial spin labeling (pCASL) perfusion magnetic resonance imaging (MRI). The alterations in regional CBF and relationship between the CBF changes and cognitive impairment were detected. The ASL-CBF connectivity of the brain regions with regional CBF significant differences was also compared between two groups. Neuropsychological tests covered seven cognitive domains. Associations between the CBF changes and cognitive impairment were further investigated. Results. Compared with the healthy controls, the acute mTBI patients exhibited increased CBF in the bilateral inferior temporal gyrus (ITG) and decreased CBF in the right middle frontal gyrus (MFG), the bilateral superior frontal gyrus (SFG), and the right cerebellum posterior lobe (CPL). In the mTBI patients, significant correlations were identified between the CBF changes and cognitive impairment. Importantly, the acute mTBI patients exhibited CBF disconnections between the right CPL and right fusiform gyrus (FG) as well as bilateral ITG, between the left SFG and left middle occipital gyrus (MOG), and between the right SFG and right FG as well as right parahippocampal gyrus. Conclusion. Our results suggest that acute mTBI patients exhibit both regional CBF abnormalities and CBF connectivity deficits, which may underlie the cognitive impairment of the acute mTBI patients

    High-Accuracy Quasi-Geoid Determination Using Molodensky’s Series Solutions and Integrated Gravity/GNSS/Leveling Data

    No full text
    This study presents a methodology for constructing a quasi-geoid model with millimeter-level accuracy over the Shangyu area in China, following the guidelines of the International Association of Geodesy Joint Working Group 2.2.2, known as “The 1 cm geoid experiment”. Our approach combines two steps to ensure exceptional accuracy. First, we employ Molodensky’s theory to model the gravity field, accounting for non-level surfaces and considering complex terrain effects. Through an exhaustive analysis of these influential factors, we implement a comprehensive suite of applicable formulae within Molodensky’s series solution, enabling a thorough assessment of their impacts on height anomalies within the gravimetric quasi-geoid model. Second, we utilize a hybrid method that involves a multi-surface function using the least-squares method and a robust estimation technique. This approach enables the interpolation of quasi-geoid heights by incorporating ellipsoidal and leveling normal heights, as well as gravimetric quasi-geoid data. Through a numerical example, we demonstrate the efficiency of our solution concept, achieving an accuracy of 0.79 cm compared to independent global navigation satellite system (GNSS)/leveling measurements. By developing this methodology, our study contributes to the advancement of geodesy research and provides a valuable methodology for creating highly precise quasi-geoid models in geodetic applications
    corecore