4,082 research outputs found

    Representations of Hopf Ore extensions of group algebras and pointed Hopf algebras of rank one

    Full text link
    In this paper, we study the representation theory of Hopf-Ore extensions of group algebras and pointed Hopf algebras of rank one over an arbitrary field kk. Let H=kG(\chi, a,\d) be a Hopf-Ore extension of kGkG and Hβ€²H' a rank one quotient Hopf algebra of HH, where kk is a field, GG is a group, aa is a central element of GG and Ο‡\chi is a kk-valued character for GG with Ο‡(a)β‰ 1\chi(a)\neq 1. We first show that the simple weight modules over HH and Hβ€²H' are finite dimensional. Then we describe the structures of all simple weight modules over HH and Hβ€²H', and classify them. We also consider the decomposition of the tensor product of two simple weight modules over Hβ€²H' into the direct sum of indecomposable modules. Furthermore, we describe the structures of finite dimensional indecomposable weight modules over HH and Hβ€²H', and classify them. Finally, when Ο‡(a)\chi(a) is a primitive nn-th root of unity for some n>2n>2, we determine all finite dimensional indecomposable projective objects in the category of weight modules over Hβ€²H'.Comment: arXiv admin note: substantial text overlap with arXiv:1206.394

    Annihilation Rates of Heavy 1βˆ’βˆ’1^{--} S-wave Quarkonia in Salpeter Method

    Get PDF
    The annihilation rates of vector 1βˆ’βˆ’1^{--} charmonium and bottomonium 3S1^3S_1 states Vβ†’e+eβˆ’V \rightarrow e^+e^- and Vβ†’3Ξ³V\rightarrow 3\gamma, Vβ†’Ξ³ggV \rightarrow \gamma gg and Vβ†’3gV \rightarrow 3g are estimated in the relativistic Salpeter method. We obtained Ξ“(J/Οˆβ†’3Ξ³)=6.8Γ—10βˆ’4\Gamma(J/\psi\rightarrow 3\gamma)=6.8\times 10^{-4} keV, Ξ“(ψ(2S)β†’3Ξ³)=2.5Γ—10βˆ’4\Gamma(\psi(2S)\rightarrow 3\gamma)=2.5\times 10^{-4} keV, Ξ“(ψ(3S)β†’3Ξ³)=1.7Γ—10βˆ’4\Gamma(\psi(3S)\rightarrow 3\gamma)=1.7\times 10^{-4} keV, Ξ“(Ξ₯(1S)β†’3Ξ³)=1.5Γ—10βˆ’5\Gamma(\Upsilon(1S)\rightarrow 3\gamma)=1.5\times 10^{-5} keV, Ξ“(Ξ₯(2S)β†’3Ξ³)=5.7Γ—10βˆ’6\Gamma(\Upsilon(2S)\rightarrow 3\gamma)=5.7\times 10^{-6} keV, Ξ“(Ξ₯(3S)β†’3Ξ³)=3.5Γ—10βˆ’6\Gamma(\Upsilon(3S)\rightarrow 3\gamma)=3.5\times 10^{-6} keV and Ξ“(Ξ₯(4S)β†’3Ξ³)=2.6Γ—10βˆ’6\Gamma(\Upsilon(4S)\rightarrow 3\gamma)=2.6\times 10^{-6} keV. In our calculations, special attention is paid to the relativistic correction, which is important and can not be ignored for excited 2S2S, 3S3S and higher excited states.Comment: 10 pages,2 figures, 5 table
    • …
    corecore