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Annihilation rates of vector 1−− charmonium and bottomonium 3 S1 states V → e+e− and V → 3γ , V →
γ gg and V → 3g are estimated in the relativistic Salpeter method. In our calculations, special attention
is paid to the relativistic correction, which is important and cannot be ignored for excited 2S , 3S and
higher excited states. We obtain Γ ( J/ψ → 3γ ) = 6.8 × 10−4 keV, Γ (ψ(2S) → 3γ ) = 2.5 × 10−4 keV,
Γ (ψ(3S) → 3γ ) = 1.7×10−4 keV, Γ (Υ (1S) → 3γ ) = 1.5×10−5 keV, Γ (Υ (2S) → 3γ ) = 5.7×10−6 keV,
Γ (Υ (3S) → 3γ ) = 3.5 × 10−6 keV and Γ (Υ (4S) → 3γ ) = 2.6 × 10−6 keV.
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1. Introduction

Annihilation decay of 1−− S-wave heavy quarkonia has been
extensively studied [1–7]. The interest in this study comes from
several sources. First, the annihilation amplitudes are related to
the behavior of wave function, enabling an understanding of the
formalism of inter-quark interactions. Further more, it can be a
sensitive test of potential models [8]. Finally, the ratio of the decay
widths, e.g. Γ (V → e+e−)/Γ (V → 3g), is sensitive to the running
coupling constant αs(μ), where V is a heavy quarkonium vector
state and μ is the scale (μ = mc for J/ψ and μ = mb for Υ ),
and may provide very useful information for αs at the heavy quark
mass scale [9,10].

In our previous Letters [11], two-photon and two-gluon anni-
hilation rates of J P C = 0−+ , 0++ and 2++ cc̄ and bb̄ states are
computed with the relativistic Salpeter method. Good agreement
of the predictions with other theoretical calculations and the avail-
able experimental data is found. In the calculations, we found the
relativistic corrections are large and not negligible, especially for
high excited states, such as, the 2S and 3S states, because there
are node structures in wave functions of 2S and 3S states, these
cause large relativistic corrections even for heavy quarkonium like
bottomonium. So in the theoretical studies concerning the highly
excited states, a relativistic model is required.

* Corresponding author.
E-mail address: gl_wang@hit.edu.c (G.-L. Wang).
0370-2693 © 2010 Elsevier B.V.
doi:10.1016/j.physletb.2010.07.050

Open access under CC BY license.
The annihilation decays of the vector 1−− states are differ-
ent from the C even states. Basically there are two types of an-
nihilation decay modes, which are V → γ ∗ → l+l− and V →
3γ , γ gg, 3g . These decay widths have been studied in non-
relativistic limit and found to be proportional to the square of
the wave function at the origin |ψ(0)|2 [1,12]. However, the de-
cay rates of many processes are subject to substantial relativistic
corrections [10,13,14]. In this Letter, we will continue to study the
annihilation decays of J P C = 1−− cc̄ and bb̄ states with the rela-
tivistic Salpeter method.

There are two sources of relativistic corrections [4,11], one is
the correction in relativistic kinematics which appears in the de-
cay amplitudes through a well-defined form of relativistic wave
function (i.e., not merely through the wave function at origin); the
other relativistic correction comes via the relativistic inter-quark
dynamics, which requires a relativistic formalism to describe the
interactions among quarks and relativistic formalism to consider
the transition amplitude. To consider the relativistic corrections,
we choose the Salpeter method [15], which is an instantaneous
version of Bethe–Salpeter method [16]. For the equal-mass quarko-
nium, the non-instantaneous correction is very small [17]. For the
annihilation amplitude, we choose Mandelstam formalism [18],
which is well suited for the computation of relativistic transition
amplitude with Bethe–Salpeter wave functions as input.

In Section 2, we give theoretical details for the annihilation
amplitude in Mandelstam formalism and the corresponding wave
function with a well-defined relativistic form. The decay width of
V → γ ∗ → e+e− and V → 3γ , γ gg, 3g are formulated in this
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section. We will show the numerical results and give discussions
in Section 3.

2. Theoretical details

2.1. The V → e+e− decay

According to Mandelstam formalism [18], the transition ampli-
tude of a quarkonium decaying into an electron and a positron (see
Fig. 1) can be written as

Te+e− = i
√

3e2eq

∫
d4q

(2π)4
tr

[
χ(q)γμ

] gμν

M2
ūr1(

�k1)γν vr2(
�k2), (1)

where eq = 2
3 for charm quark and eq = − 1

3 for bottom quark;
�k1 and �k2 are the momenta of electron and positron respectively;
M is the meson mass; χ(q) is the Bethe–Salpeter wave function
with the total momentum P and relative momentum q, related by

p1 = α1 P + q, α1 ≡ m1

m1 + m2
,

p2 = α2 P − q, α2 ≡ m2

m1 + m2
,

where m1 = m2 is the constitute quark mass of charm or bottom.
After performing the integration over q0, one reduce the ex-

pression, with the notation of Salpeter wave function Ψ (�q) =
i
∫ dq0

2π χ(q), to

Te+e− = √
3e2eq

∫
d�q

(2π)3
tr

[
Ψ (�q)γμ

] gμν

M2
ūr1(

�k1)γν vr2(
�k2). (2)

We note that the form of the wave function is also important
in the calculation, since the corrections of the relativistic kinetics
come mainly through it. By analyzing the parity and charge con-
jugation, the general form of relativistic wave function of 1− state
(1−− for equal mass systems) can be written as [19]

Ψ λ
1−(q⊥)

= q⊥ · ελ⊥
[

f1(q⊥) + /P

M
f2(q⊥) + /q⊥

M
f3(q⊥) + /P/q⊥

M2
f4(q⊥)

]

+ M/ελ⊥ f5(q⊥) + /ελ⊥/P f6(q⊥) + (
/q⊥/ελ⊥ − q⊥ · ελ⊥

)
f7(q⊥)

+ 1

M

(
/P/ελ⊥/q⊥ − /Pq⊥ · ελ⊥

)
f8(q⊥), (3)

Fig. 1. Leptonic decay diagram of quarkonium.
where P and ελ⊥ are the momentum and polarization vector of
the vector meson; q⊥ = (0, �q). The 8 wave functions f i are not
independent due to the equations ϕ+−

1− (q⊥) = ϕ−+
1− (q⊥) = 0. For

quarkonium states we get the constraints on the components of
the wave functions [19]:

f1(q⊥) = q2⊥ f3(q⊥) + M2 f5(q⊥)

Mm1
, f7(q⊥) = 0,

f8(q⊥) = − M f6(q⊥)

m1
, f2(q⊥) = 0.

With these constraints, only four independent components f3, f4,
f5 and f6 are left. Namely

Ψ λ
1−−(q⊥) = q⊥ · ελ⊥

(
q2⊥

Mm1
+ /q⊥

M

)
f3(q⊥) + q⊥ · ελ⊥

/P/q⊥
M2

f4(q⊥)

+
(

M/ελ⊥ + q⊥ · ελ⊥
M

m1

)
f5(q⊥)

+
[
/ελ⊥/P + /P (q⊥ · ελ⊥)

m1
− /P/ελ⊥/q⊥

m1

]
f6(q⊥). (4)

These wave functions and the bound state mass M can be ob-
tained by solving the full Salpeter equation with the constituent
quark mass as input. We will not show the details of how to solve
the full Salpeter equation, only give the final results. Interested
readers can find the detail technique in Refs. [19,20].

Defining the decay constant f V by

f V Mελ
μ ≡ 〈0|q̄1γμq2|V , ε〉 = √

3
∫

d3q

(2π)3
tr

[
ϕ(�q)γμ

]
, (5)

and with Eq. (4) we can easily obtain

f V = 4
√

3
∫

d�q
(2π)3

[
f5(�q) − �q2

3M2
f3(�q)

]
. (6)

Summing over the polarizations of the final states and averag-
ing over that of the initial state, neglecting the electron mass, it is
easy to get the decay width

Γe+e− = 4π

3
α2e2

q f 2
V /M. (7)

2.2. V → 3γ , V → γ gg and V → 3g decays

With the notation and definition used in the previous subsec-
tion, the relativistic transition amplitude of a quarkonium decaying
into three photons (see Fig. 2) can be written as

T3γ = √
3(ieeq)

3
∫

d4q

(2π)4

× tr

{
χ(q)

[
/ε3

1

/k3 − /p2 − m
/ε2

1

/p1 − /k1 − m
/ε1

+ all other permutations of 1,2,3

]}
, (8)
Fig. 2. 3γ , γ gg , 3g annihilation diagrams of quarkonium. We do not show other diagrams with all the possible permutations of photons and gluons.
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where k1,k2,k3 and ε1, ε2, ε3 are the momenta and polarization
vectors of three photons respectively.

Since p10 + p20 = M , we assume p10 = p20 = M/2 as did in
Ref. [11]. Having this assumption, we can perform the integration
over q0 to reduce the expression to

T3γ = √
3(eeq)

3
∫

d3�q
(2π)3

× tr

{
Ψ (�q)

[
/ε3

1

/k3 − /̃p2 − m
/ε2

1

/̃p1 − /k1 − m
/ε1

+ all other permutations of 1,2,3

]}
, (9)

where p̃1 = ( M
2 , �q), p̃2 = ( M

2 ,−�q).
The decay width is given by

Γ3γ = 1

3!
1

8M(2π)3

M
2∫

0

dk0
1

M
2∫

M
2 −k0

1

dk0
2

1

3

∑
pol

|T3γ |2. (10)

The width of V → γ gg and V → 3g are related to the three
photon decay width by

Γγ gg = 2

3

α2
s

α2e4
q
Γ3γ , (11)

Γ3g = 5

54

α3
s

α3e6
q
Γ3γ . (12)

For gluonic decay V → 3g , the trace of color generators gives
tr[Ta Tb Tc] = 1

4 (dabc + i fabc), so the expression of decay width con-
tains two parts, one of which is proportional to the square of
symmetric constants and the other is proportional to the square
of antisymmetric constants. The existence of antisymmetric term
breaks the relation Eq. (12). However, our calculation shows that
the antisymmetric term is sufficiently small compared to the sym-
metric term, so we can ignore it safely. In non-relativistic limit the
antisymmetric term vanishes exactly.

Table 1
Mass spectra of the cc̄ and bb̄ 1−−(3 S1) states (3 D1 states are not presented) in
unit of MeV. The experimental data are taken from PDG [22].

ψ(nS) Th(cc̄) Ex(cc̄) Υ (nS) Th(bb̄) Ex(bb̄)

J/ψ 3096.9 3096.916 Υ (1S) 9460.3 9460.30
ψ(2S) 3688.4 3686.09 Υ (2S) 10024 10023.26
ψ(3S) 4056.0 4039 Υ (3S) 10371 10355.2
ψ(4S) 4327.7 4421 Υ (4S) 10635 10579.4
ψ(5S) 4543.3 Υ (5S) 10853 10865
3. Numerical results and discussions

To solve the full Salpeter equation, we choose a phenomenolog-
ical Cornell potential. There are some parameters in this potential
including the constituent quark mass and one loop running cou-
pling constant. The following best-fit values of input parameters
were obtained by fitting the mass spectra for heavy quarkonium
1−− states [21]:

mc = 1.62 GeV, mb = 4.96 GeV. (13)

For cc̄ system, we set ΛQ C D = 0.27 GeV. With this parameter set,
we solve the full Salpeter equation and obtain the mass spectra
shown in Table 1. To give numerical results, we need to fix the
value of the renormalization scale μ in αs(μ). In the case of char-
monium, we choose the charm quark mass mc as the energy scale
and obtain the coupling constant αs(mc) = 0.38 [11].

For bb̄ system we set ΛQ C D = 0.20 GeV. With this parameter
set, the coupling constant at the scale of bottom quark mass is
αs(mb) = 0.23 [11]. The mass spectra are also shown in Table 1.

With the obtained wave function, Eq. (6) and Eq. (7), we calcu-
late the decay width of V → e+e− for cc̄ system. The results, with
other theoretical predictions and experimental data from Particle
Data Group, are shown in Table 2. Our results are larger than ex-
perimental data and consistent with the Beyer’s [23] model version
b results and Li’s results [29]. The discrepancy between ours and
experiment’s may be due to the QCD corrections. We only have the
leading order QCD correction 1 − 16

3
αs
π [3] in hand, while the large

factor 16
3 implies that high order QCD corrections can be still large

and quite essential [30,31], so we only show the results without
QCD corrections.

Decay widths of Υ (nS) → e+e− are shown in Table 3. All the
results, with or without QCD corrections, are consistent with each
other, with only small discrepancies. Since the small value of αs

at the energy scale of bottom quark, corresponds to much smaller
QCD corrections in bottomonium states than those in charmonium
states, less discrepancies exit among the results of Υ (nS) decays
than of ψ(nS) decays.

The ratios of the high excited-state widths to the ground-state
width Γ (nS)/Γ (1S) are free from the QCD corrections and sen-
sitive to wave functions. We show the ratios of leptonic decay
widths in Table 4. Our theoretical values are comparable to the
PDG data, except those in ψ(3S) and ψ(4S) states. It is can be
seen from the table that the ratios, so do the decay widths, fall
very slowly with successive radial excitations, which indicates that
the relativistic corrections are large for high excited states.

Decay widths Γ3γ , Γγ gg and Γ3g of charmonia and bottomonia
are calculated with Eqs. (9)–(12). The results and other theoreti-
cal estimates as well as experimental data are shown in Tables 5
and 6. The decay widths quoted from Ref. [9] and Ref. [30] are es-
timated based on experimental data. As in the e+e− decays case,
we only have the leading order QCD correction, e.g. 1 − 12.6 αs [3],
π
Table 2
Decay width Γ (ψ(nS) → e+e−) in unit of keV. The results marked by † do not cover the contributions of QCD corrections.

ψ(nS) J/ψ ψ(2S) ψ(3S) ψ(4S) ψ(5S)

Ours† 10.9 5.22 3.49 2.61 2.07
Beyer Ver.a† [23] 5.33 2.31 1.59 1.14
Beyer Ver.b† [23] 11.2 4.06 2.74 2.06
EQ† [24] 8.00 3.67
VPBK† [25] 5.469 2.140 0.796 0.288
GVGV [26] 2.94 1.22 0.76 0.43 0.27
IS [27] 6.72 ± 0.49 2.66 ± 0.19
SYEF [28] 3.93 1.78 1.11
LC† [29] 11.8 4.29 2.53 1.73 1.25
PDG [22] 5.55 ± 0.14 ± 0.02 2.38 ± 0.04 0.86 ± 0.07 0.58 ± 0.07
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Table 3
Decay width Γ (Υ (nS) → e+e−) in unit of keV. The results marked by † do not cover the contributions of QCD corrections.

Υ (nS) Υ (1S) Υ (2S) Υ (3S) Υ (4S) Υ (5S)

Ours† 1.47 0.736 0.530 0.425 0.359
Beyer Ver.a† [23] 1.24 0.51 0.35 0.28
Beyer Ver.b† [23] 1.41 0.56 0.36 0.30
EQ† [24] 1.71 0.76 0.55
VPBK† [25] 1.320 0.628 0.263 0.104 0.0404
GVGV [26] 0.98 0.41 0.27 0.20 0.16
IS [27] 1.45 ± 0.07 0.52 ± 0.02 0.35 ± 0.02
González [32] 1.7 0.61 0.39 0.27 0.21
PDG [22] 1.340 ± 0.018 0.612 ± 0.011 0.443 ± 0.008 0.272 ± 0.029 0.31 ± 0.07

Table 4
The ratios of the high excited-state widths to the ground-state width Γ (nS)/Γ (1S) for decay Γ (ψ(nS) → e+e−) and Γ (Υ (nS) → e+e−).

Γ (ψ(nS))/Γ (ψ(1S)) Γ (2S)/Γ (1S) Γ (3S)/Γ (1S) Γ (4S)/Γ (1S) Γ (5S)/Γ (1S)

Ours 0.48 0.32 0.24 0.19
PDG [22] 0.43 0.15 0.10

Γ (Υ (nS))/Γ (Υ (1S)) Γ (2S)/Γ (1S) Γ (3S)/Γ (1S) Γ (4S)/Γ (1S) Γ (5S)/Γ (1S)

Ours 0.50 0.36 0.29 0.24
PDG [22] 0.46 0.33 0.20 0.23

Table 5
Decay widths of ψ(nS) → 3γ , γ gg, 3g in unit of keV. The data marked by ∗ is quoted from Ref. [35]. The results marked by † do not cover the contributions of QCD
corrections.

Decay Ours† GI† [8] ML [33] PCP† [34] SYEF [28] Voloshin [30]

Γ ( J/ψ → 3g) 101 176 80 ± 40 63.72 61.5 ± 3.1
Γ (ψ(2S) → 3g) 36.6 78.4 20.49 45.3 ± 9.3
Γ (ψ(3S) → 3g) 24.7 11.92
Γ (ψ(4S) → 3g) 19.8 8.08
Γ (ψ(5S) → 3g) 16.7

Γ ( J/ψ → γ gg) 6.18 7.5 ± 3 7.46 ± 2.80
Γ (ψ(2S) → γ gg) 2.25 3.04
Γ (ψ(3S) → γ gg) 1.52
Γ (ψ(4S) → γ gg) 1.22
Γ (ψ(5S) → γ gg) 1.03

Γ ( J/ψ → 3γ ) 0.68 × 10−3 0.56 × 10−3 ∗(1.12 ± 0.47) × 10−3

Γ (ψ(2S) → 3γ ) 0.25 × 10−3

Γ (ψ(3S) → 3γ ) 0.17 × 10−3

Γ (ψ(4S) → 3γ ) 0.13 × 10−3

Γ (ψ(5S) → 3γ ) 0.11 × 10−3
Table 6
Decay widths of Υ (nS) → 3γ , γ gg , 3g in unit of keV. The results marked by † do
not cover the contributions of QCD corrections.

Decay Ours† GI† [8] ML [33] KMRR [9]

Γ (Υ (1S) → 3g) 32.5 44.1 28 ± 6 42.9 ± 1.2
Γ (Υ (2S) → 3g) 12.0 22.5
Γ (Υ (3S) → 3g) 7.47 16.9
Γ (Υ (4S) → 3g) 5.52 12.1
Γ (Υ (5S) → 3g) 4.41

Γ (Υ (1S) → γ gg) 0.826 0.9 ± 0.2 1.20
Γ (Υ (2S) → γ gg) 0.304
Γ (Υ (3S) → γ gg) 0.190
Γ (Υ (4S) → γ gg) 0.140
Γ (Υ (5S) → γ gg) 0.112

Γ (Υ (1S) → 3γ ) 0.15 × 10−4

Γ (Υ (2S) → 3γ ) 0.57 × 10−5

Γ (Υ (3S) → 3γ ) 0.35 × 10−5

Γ (Υ (4S) → 3γ ) 0.26 × 10−5

Γ (Υ (5S) → 3γ ) 0.21 × 10−5

in hand, and the large factor 12.6 implies that if we consider the
QCD corrections, we need include high order QCD corrections not
only the leading one. Besides, current leading order QCD factor is
too sensitive to the value of αs , which make other contributions,
such as relativistic corrections, unclear, so we only show the re-
sults without QCD corrections. For the same reason in the leptonic
decays case, we show the ratios Γ3g(nS)/Γ3g(1S) in Table 7.

A typical non-relativistic calculation gives B( J/ψ → 3γ ) ∼
3 × 10−5 [28,30], while our relativistic result B( J/ψ → 3γ ) ∼
0.73 × 10−5 (the total width of J/ψ is 93.2 ± 2.1 keV [22]) is
much smaller than the non-relativistic one, but within the experi-
mental error bar. This indicates that the relativistic corrections for
charmonia 3γ decays, so do the γ gg, 3g decays, are large. This
conclusion is also obtained by other authors, see Refs. [10,13,14].
Besides, our calculations show that the relativistic corrections for
higher excited states are even lager than those for the ground state
and lower excited states.

One can see from Tables 5–7, that the decay widths, which are
sensitive to the wave functions of corresponding states, fall very
slowly from 1S to 5S . We obtained the similar results as the cases
of e+e− decays. This behavior is different from the non-relativistic
models, where the values fall quickly from 1S to 5S . It shows that
the relativistic corrections are large and important, especially for
the higher excited states. It is believed that the relativistic correc-
tions are small for bottomonium, however, we point that, this is
true for ground state, but not exactly true for the excited states,
especially for high excited states.
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Table 7
The ratios of the high excited-state widths to the ground-state width Γ (nS)/Γ (1S) for decay Γ (ψ(nS) → 3g) and Γ (Υ (nS) → 3g).

Γ (ψ(nS))/Γ (ψ(1S)) Γ (2S)/Γ (1S) Γ (3S)/Γ (1S) Γ (4S)/Γ (1S) Γ (5S)/Γ (1S)

Ours 0.36 0.24 0.20 0.17
GI [8] 0.45
PCP [34] 0.32 0.19 0.13
Voloshin [30] 0.74

Γ (Υ (nS))/Γ (Υ (1S)) Γ (2S)/Γ (1S) Γ (3S)/Γ (1S) Γ (4S)/Γ (1S) Γ (5S)/Γ (1S)

Ours 0.37 0.23 0.17 0.14
GI [8] 0.51 0.38 0.27
Table 8
Relative deviations of decay width Γ3γ with assumptions p10 = 0.9 × M/2, p20 =
1.1 × M/2 from that with p10 = p20 = M/2.

nS 1S 2S 3S 4S 5S

cc̄ −2.0% −2.9% −4.7% −7.0% −8.2%
bb̄ −1.8% −2.0% −2.2% −2.4% −2.6%

In calculating the decay widths Γ3γ , we assume p10 = p20 =
M/2. To show the effect of relaxing this assumption, we take
p10 = 0.9 × M/2, p20 = 1.1 × M/2 and estimate the relative de-
viations of decay widths (Γ − Γ0)/Γ0, which are shown in Ta-
ble 8. We interchange the values of p10 and p20, say, take p10 =
1.1 × M/2, p20 = 0.9 × M/2, and find that the results are exactly
the same as the unchanged case as expected.

In summary, by solving the relativistic full Salpeter equation
with a well-defined form of wave function, we estimate annihi-
lation decay rates of heavy quarkonium 1−−(3 S1) states including
V → e+e− , V → 3γ , V → γ gg and V → 3g . We conclude that
the relativistic correction and QCD correction in these annihilation
decays play important roles, and high order QCD corrections are
expected.
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