46 research outputs found

    Geology-engineering integration to improve drilling speed and safety in ultra-deep clastic reservoirs of the Qiulitage structural belt

    Get PDF
    The Qiulitage structural belt in Tarim Basin has a large reservoir burial depth and complex geological conditions. Challenges such as ultra-depth, high temperature, high pressure and high stress lead to significant problems related to well control safety and project efficiency. To solve these key technical issues that set barriers to the process of exploration and development, a drilling technology process via the integration of geology and engineering was established with geomechanics as the bridge. An integrated key drilling engineering technology was formed for improving the drilling speed and safety of ultra-deep wells, including well location optimization, well trajectory optimization, formation pressure prediction before drilling, stratum drillability evaluation, and bit and speed-up tool design and optimization. Combined with the seismic data, logging data, structural characteristics, and lithology distribution characteristics, a rock mechanics data volume related to the three-dimensional drilling resistance characteristics of the block was established for the first time. The longitudinal and lateral heterogeneities were quantitatively characterized, providing a basis for bit design, improvement and optimization. During the drilling process, the geomechanical model was corrected in time according to the actual drilling information, and the drilling “three pressures” data were updated in real time to support the dynamic adjustment of drilling parameters. Through field practice, the average drilling complexity rate was reduced from 18% to 4.6%, and the drilling cycle at 8,500 m depth was reduced from 326 days to 257 days, which comprised significant improvements compared to the vertical wells deployed in the early stage without considering geology-engineering integration.Cited as: Chen, C., Ji, G., Wang, H., Huang, H., Baud, P., Wu, Q. Geology-engineering integration to improve drilling speed and safety in ultra-deep clastic reservoirs of the Qiulitage structural belt. Advances in Geo-Energy Research, 2022, 6(4): 347-356. https://doi.org/10.46690/ager.2022.04.0

    Modeling of System Energy of Rock Under Harmonic Vibro-Impact

    Get PDF
    Hamiltonian function is proposed and the modeling of system energy of rock under harmonic vibro-impact is undertaken in this study. The modeling includes two aspects, namely, energy equation of rock system with no damping and the one with damping. Also, the results of numerical simulation are presented. Four main control parameters are considered, including natural frequency of rock, impact frequency, impact force, damping coefficient.It is confirmed that the system energy of rock will increase with the increase of natural frequency impact frequency and impact force. While impact force, damping coefficient and stiffness of rock will mainly decide the vibration amplitude of system energy

    The Micro Vibration Equation of Rock and Its Analysis in Flat Indenter Basing on the Principle of Least Action

    Get PDF
    Impact frequency of drill tools, vibration displacement of rock and other factors play a key role on the impact efficiency of vibration and rock breaking effect in the percussion drilling. In this paper, the micro vibration equation of rock in the impact of indenter was established based on the principle of least action. Then the relationship among vibration displacement of rock and quality and natural frequency of rock, impact force and impact frequency of indenter and time were analyzed. The results show that the curve of vibration displacement is kind of shape of cosine function, its size fluctuates up and down in the equilibrium position with the changes in various factors; The greater the impact of flat indenter is, The smaller the quality of rock is, the greater the vibration displacement of rock is; The closer the impact frequency of indenter and natural frequency of rock are, the greater the vibration amplitude of rock is, and it is significantly higher than the situation which the difference of impact frequency of indenter and natural frequency of rock is large

    Case Report: Using Medtronic AP360 mechanical prosthesis in mitral valve replacement for patients with mitral insufficiency after primum atrial septal defect repair to reduce left ventricular outflow tract obstruction risk

    Get PDF
    BackgroundAtrial septal defect is one of the most common congenital heart diseases in adults. Primum atrial septal defect (PASD) accounts for 4%–5% of congenital heart defects. Patients with PASD frequently suffer mitral insufficiency (MI), and thus, mitral valvuloplasty (MVP) or mitral valve replacement (MVR) is often required at the time of PASD repair. Unfortunately, recurrent unrepairable severe mitral regurgitation can develop in many patients undergoing PASD repair plus MVP in either short- or long-term after the repair surgery, requiring a re-do MVR. In those patients, the risk of left ventricular outflow tract obstruction (LVOTO) has increased.Case presentationWe present five such cases, ranging in age from 24 to 47 years, who had a PASD repair plus MVP or MVR for 14–40 years while suffering moderate to severe mitral regurgitation. Using Medtronic AP360 mechanical mitral prostheses, only one patient experienced mild LVOTO.ConclusionsThe use of Medtronic AP360 mechanical mitral prostheses to perform MVR in patients with MI who had a history of PASD repair can potentially reduce the risk of LVOTO. Long-term follow-up is required to further confirm this clinical benefit associated with AP360 implantation in patients with PASD

    Efficacy and safety of a novel 450 nm blue diode laser versus plasmakinetic electrocautery for the transurethral resection of non-muscle invasive bladder cancer: The protocol and result of a multicenter randomized controlled trial

    Get PDF
    ObjectivesTo be the first to apply a novel 450 nm blue diode laser in transurethral resection of bladder tumor (TURBt) to treat patients with non-muscle invasive bladder cancer (NMIBC) and evaluate its efficacy and safety during the preoperative period compared to the conventional plasmakinetic electrocautery.Materials and MethodsRandomized controlled trial (RCT) in five medical centers was designed as a non-inferiority study and conducted from October 2018 to December 2019. Patients with NMIBC were randomized to the blue laser or plasmakinetic electrocautery group for TURBt. As the first study to evaluate this novel blue laser device, the primary outcome was the effective resection rate of bladder tumors, including effective dissection and hemostasis. The secondary outcomes were the perioperative records, including surgical time, postoperative indwelling catheter time, hospital stay length, blood loss, reoperation rate, wound healing and adverse events.ResultsA total of 174 patients were randomized to either the blue laser group (85 patients) or plasmakinetic electrocautery group (89 patients). There was no statistical significance in the clinical features of bladder tumors, including tumor site, number and maximum lesion size. Both the blue laser and plasmakinetic electrocautery could effectively dissect all visible bladder tumors. The surgical time for patients in the blue laser group was longer (p=0.001), but their blood loss was less than that of patients in the control group (p=0.003). There were no differences in the postoperative indwelling catheter time, hospital stay length, reoperation rate or other adverse events. However, the patients undergoing TURBt with the blue laser showed a faster wound healing at 3 months after operation.ConclusionThe novel blue laser could be effectively and safely used for TURBt in patients with NMIBC, and this method was not inferior to plasmakinetic electrocautery during the perioperative period. However, TURBt with the blue laser may provide the benefit to reduce preoperative blood loss and accelerate postoperative wound healing. Moreover, longer follow-up to confirm recurrence-free survival benefit was required

    Identification of PDCD1 as a potential biomarker in acute rejection after kidney transplantation via comprehensive bioinformatic analysis

    Get PDF
    BackgroundAcute rejection is a determinant of prognosis following kidney transplantation. It is essential to search for novel noninvasive biomarkers for early diagnosis and prompt treatment.MethodsGene microarray data was downloaded from the Gene Expression Omnibus (GEO) expression profile database and the intersected differentially expressed genes (DEGs) was calculated. We conducted the DEGs with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Distribution of immune cell infiltration was calculated by CIBERSORT. A hub gene marker was identified by intersecting the rejection-related genes from WGCNA and a selected KEGG pathway—T cell receptor signaling pathway (hsa04660), and building a protein-protein interaction network using the STRING database and Cytoscape software. We performed flow-cytometry analysis to validate the hub gene.ResultsA total of 1450 integrated DEGs were obtained from five datasets (GSE1563, GSE174020, GSE98320, GSE36059, GSE25902). The GO, KEGG and immune infiltration analysis results showed that AR was mainly associated with T cell activation and various T-cell related pathways. Other immune cells, such as B cells, Macrophage and Dendritic cells were also associated with the progress. After utilizing the WGCNA and PPI network, PDCD1 was identified as the hub gene. The flow-cytometry analysis demonstrated that both in CD4+ and CD8+ T cells, PD1+CD57-, an exhausted T cell phenotype, were downregulated in the acute rejection whole blood samples.ConclusionsOur study illustrated that PDCD1 may be a candidate diagnostic biomarker for acute kidney transplant rejection via integrative bioinformatic analysis

    Scalable Ad Hoc Networks for Arbitrary-Cast: Practical Broadcast-Relay Transmission Strategy Leveraging Physical-Layer Network Coding

    No full text
    <p>Abstract</p> <p>The capacity of wireless ad hoc networks is constrained by the interference of concurrent transmissions among nodes. Instead of only trying to avoid the interference, physical-layer network coding (PNC) is a new approach that embraces the interference initiatively. We employ a network form of interference cancellation, with the PNC approach, and propose the multihop, broadcast-relay transmission strategy in linear, rectangular, and hexagonal networks. The theoretical analysis shows that it gains the transmission efficiency by the factors of 2.5 for the rectangular networks and 2 for the hexagonal networks. We also propose a practical signal recovery algorithm in the physical layer to deal with the influence of multipath fading channels and time synchronization errors, as well as to use media access control (MAC) protocols that support the simultaneous receptions. This transmission strategy obtains the same efficiency from one-to-one communication to one-to-many. By our approach, the number of the users/terminals of the network has better scalability, and the overall network throughput is improved.</p

    Scalable Ad Hoc Networks for Arbitrary-Cast: Practical Broadcast-Relay Transmission Strategy Leveraging Physical-Layer Network Coding

    No full text
    The capacity of wireless ad hoc networks is constrained by the interference of concurrent transmissions among nodes. Instead of only trying to avoid the interference, physical-layer network coding (PNC) is a new approach that embraces the interference initiatively. We employ a network form of interference cancellation, with the PNC approach, and propose the multihop, broadcast-relay transmission strategy in linear, rectangular, and hexagonal networks. The theoretical analysis shows that it gains the transmission efficiency by the factors of 2.5 for the rectangular networks and 2 for the hexagonal networks. We also propose a practical signal recovery algorithm in the physical layer to deal with the influence of multipath fading channels and time synchronization errors, as well as to use media access control (MAC) protocols that support the simultaneous receptions. This transmission strategy obtains the same efficiency from one-to-one communication to one-to-many. By our approach, the number of the users/terminals of the network has better scalability, and the overall network throughput is improved

    Subcarrier and power allocation for multiuser MIMO-OFDM systems with various detectors

    Full text link
    corecore