2,409 research outputs found

    Spin-spin interaction in the bulk of topological insulators

    Full text link
    We apply mean-field theory and Hirsch-Fye quantum Monte Carlo method to study the spin-spin interaction in the bulk of three-dimensional topological insulators. We find that the spin-spin interaction has three different components: the longitudinal, the transverse and the transverse Dzyaloshinskii-Moriya-like terms. When the Fermi energy is located in the bulk gap of topological insulators, the spin-spin interaction decays exponentially due to Bloembergen-Rowland interaction. The longitudinal correlation is antiferromagnetic and the transverse correlations are ferromagnetic. When the chemical potential is in the conduction or valence band, the spin-spin interaction follows power law decay, and isotropic ferromagnetic interaction dominates in short separation limit.Comment: 9 pages, 10 figure

    A new highly anti-interference regularization method for ill-posed problems

    Get PDF
    The solution of inverse problems has many applications in mathematical physics. Regularization methods can be applied to obtain the solution of ill-conditioned inverse problems by solving a family of neighboring well-posed problems. Thus, it is significant to investigate the regularization methods to increase the accuracy and efficiency of the solution of inverse problems. In this work, a new regularization filter and the related regularization method based on the singular system theory of compact operator are proposed to solve ill-posed problems. The Cauchy problem of Laplace equation of the first kind is a kind of well-known ill-posed problem. Numerical tests show that the proposed regularization method can solve the Cauchy problems more efficiently under a proper selection of regularization parameters. Numerical results also show that the proposed method is especially effective in solving ill-posed problems with big perturbations

    Chaos-based wireless communication resisting multipath effects

    Get PDF
    This work is supported by NSFC (China) under Grants No. 61401354, No. 61172070, and No. 61502385; by the Innovative Research Team of Shaanxi Province under Grant No. 2013KCT-04; and by Key Basic Research Fund of Shaanxi Province under Grant No. 2016JQ6015.Peer reviewedPublisher PD

    Iteratively Learning Embeddings and Rules for Knowledge Graph Reasoning

    Full text link
    Reasoning is essential for the development of large knowledge graphs, especially for completion, which aims to infer new triples based on existing ones. Both rules and embeddings can be used for knowledge graph reasoning and they have their own advantages and difficulties. Rule-based reasoning is accurate and explainable but rule learning with searching over the graph always suffers from efficiency due to huge search space. Embedding-based reasoning is more scalable and efficient as the reasoning is conducted via computation between embeddings, but it has difficulty learning good representations for sparse entities because a good embedding relies heavily on data richness. Based on this observation, in this paper we explore how embedding and rule learning can be combined together and complement each other's difficulties with their advantages. We propose a novel framework IterE iteratively learning embeddings and rules, in which rules are learned from embeddings with proper pruning strategy and embeddings are learned from existing triples and new triples inferred by rules. Evaluations on embedding qualities of IterE show that rules help improve the quality of sparse entity embeddings and their link prediction results. We also evaluate the efficiency of rule learning and quality of rules from IterE compared with AMIE+, showing that IterE is capable of generating high quality rules more efficiently. Experiments show that iteratively learning embeddings and rules benefit each other during learning and prediction.Comment: This paper is accepted by WWW'1

    Population synthesis of accreting white dwarfs: II. X-ray and UV emission

    Full text link
    Accreting white dwarfs (WDs) with non-degenerate companions are expected to emit in soft X-rays and the UV, if accreted H-rich material burns stably. They are an important component of the unresolved emission of elliptical galaxies, and their combined ionizing luminosity may significantly influence the optical line emission from warm ISM. In an earlier paper we modeled populations of accreting WDs, first generating WD with main-sequence, Hertzsprung gap and red giant companions with the population synthesis code \textsc{BSE}, and then following their evolution with a grid of evolutionary tracks computed with \textsc{MESA}. Now we use these results to estimate the soft X-ray (0.3-0.7keV), H- and He II-ionizing luminosities of nuclear burning WDs and the number of super-soft X-ray sources for galaxies with different star formation histories. For the starburst case, these quantities peak at 1\sim 1 Gyr and decline by 13\sim 1-3 orders of magnitude by the age of 10 Gyr. For stellar ages of \sim~10 Gyr, predictions of our model are consistent with soft X-ray luminosities observed by Chandra in nearby elliptical galaxies and He II 4686A˚/Hβ\AA/\rm{H}{\beta} line ratio measured in stacked SDSS spectra of retired galaxies, the latter characterising the strength and hardness of the UV radiation field. However, the soft X-ray luminosity and He~II~4686A˚/Hβ\AA/\rm{H}{\beta} ratio are significantly overpredicted for stellar ages of 48\lesssim 4-8 Gyr. We discuss various possibilities to resolve this discrepancy and tentatively conclude that it may be resolved by a modification of the typically used criteria of dynamically unstable mass loss for giant stars.Comment: 13 pages, 12 figures, MNRAS accepte

    Next generation population synthesis of accreting white dwarfs: I. Hybrid calculations using BSE + MESA

    Full text link
    Accreting, nuclear-burning white dwarfs have been deemed to be candidate progenitors of type Ia supernovae, and to account for supersoft X-ray sources, novae, etc. depending on their accretion rates. We have carried out a binary population synthesis study of their populations using two algorithms. In the first, we use the binary population synthesis code \textsf{BSE} as a baseline for the "rapid" approach commonly used in such studies. In the second, we employ a "hybrid" approach, in which we use \textsf{BSE} to generate a population of white dwarfs (WD) with non-degenerate companions on the verge of filling their Roche lobes. We then follow their mass transfer phase using the detailed stellar evolution code \textsf{MESA}. We investigate the evolution of the number of rapidly accreting white dwarfs (RAWDs) and stably nuclear-burning white dwarfs (SNBWDs), and estimate the type Ia supernovae (SNe Ia) rate produced by "single-degenerate" systems (SD). We find significant differences between the two algorithms in the predicted numbers of SNBWDs at early times, and also in the delay time distribution (DTD) of SD SNe Ia. Such differences in the treatment of mass transfer may partially account for differences in the SNe Ia rate and DTD found by different groups. Adopting 100\% efficiency for helium burning, the rate of SNe Ia produced by the SD-channel in a Milky-way-like galaxy in our calculations is 2.0×104yr12.0\times10^{-4}\rm{yr}^{-1}, more than an order of magnitude below the observationally inferred value. In agreement with previous studies, our calculated SD DTD is inconsistent with observations.Comment: 13 pages,11 figures, accepted by MNRA
    corecore