4,871 research outputs found

    Anderson Impurity in Helical Metal

    Get PDF
    We use a trial wave function to study the spin-1/2 Kondo effect of a helical metal on the surface of a three-dimensional topological insulator. While the impurity spin is quenched by conduction electrons, the spin-spin correlation of the conduction electron and impurity is strongly anisotropic in both spin and spatial spaces. As a result of strong spin-orbit coupling, the out-of-plane component of the impurity spin is found to be fully screened by the orbital angular momentum of the conduction electrons.Comment: The published versio

    Measures of imaginarity and quantum state order

    Full text link
    Complex numbers are widely used in both classical and quantum physics, and play an important role in describing quantum systems and their dynamical behavior. In this paper we study several measures of imaginarity of quantum states in the framework of resource theory, such as the measures based on l1l_{1} norm, and convex function, etc. We also investigate the influence of the quantum channels on quantum state order for a single-qubit.Comment: 11 page

    Research on damping parameter identification of elastomer buffer

    Get PDF
    The object of this paper is the changing process of damping force as the falling weight impacting the elastomer buffer. The whole mechanical system is built up through practical test and simulation. According to the type of elastomer buffer and the experimental process in shock environment, velocity damping force identification model was established. Wavelet denoising and least square method were used for parameter identification of damping force. Considering the data saturation problem in the traditional least square method, the limited memory least square method was obtained to improve the identification method. The results of parameter identification of damping force based on limited memory method proved that the limited memory method was superior to least square method. The numerical results demonstrate the effectiveness of the identification model

    Experimental study on a certain elastomer buffer with dynamic identification method

    Get PDF
    The damping force of elastomer buffer in shock environment is the research object of this paper. The impact experiment and data simulation are used to understand the whole mechanical system. Equation with velocity and damping force is used for modeling according to the specific type of the elastomer buffer. The data of velocity and damping force is obtained by experimental data collection and pretreatment. Genetic algorithm is used to identify parameters according to the time invariant feature of traditional model. Through the results of parameter identification by genetic algorithm it seems that the parameters have the time-varying characteristics. Therefore, time-varying method is used for parameter identification. Limited memory method, which is obtained by the improvement of traditional least square method, is used for time-varying parameter identification. And the fitting accuracy of the identification results is better than that of genetic algorithm. The numerical results prove that the model is effective and parameters are time-varying

    Giant mesoscopic spin Hall effect on surface of topological insulator

    Get PDF
    We study mesoscopic spin Hall effect on the surface of topological insulator with a step-function potential. The giant spin polarization induced by a transverse electric current is derived analytically by using McMillan method in the ballistic transport limit, which oscillates across the potential boundary with no confinement from the potential barrier due to the Klein paradox, and should be observable in spin resolved scanning tunneling microscope.Comment: 5 pages, 3 figure

    Theory for charge and orbital density-wave states in manganite La0.5_{0.5}Sr1.5_{1.5}MnO4_4

    Get PDF
    We investigate the high temperature phase of layered manganites, and demonstrate that the charge-orbital phase transition without magnetic order in La0.5_{0.5}Sr1.5_{1.5}MnO4_4 can be understood in terms of the density wave instability. The orbital ordering is found to be induced by the nesting between segments of Fermi surface with different orbital characters. The simultaneous charge and orbital orderings are elaborated with a mean field theory. The ordered orbitals are shown to be dx2−y2±d3z2−r2d_{x^2-y^2} \pm d_{3z^2-r^2}.Comment: published versio

    Recent progresses in stem cell research and hearing restoration

    Get PDF

    Comparison of Transient Behaviors of Wind Turbines with DFIG Considering the Shaft Flexible Models

    Get PDF

    On hydrodynamic characteristics of gap resonance between two fixed bodies in close proximity

    Get PDF
    The resonant water motion inside a narrow gap between two identical fixed boxes that are in side-by-side configuration is investigated using a two-dimensional (2D) numerical wave tank based on OpenFOAM®, an open source CFD package. Gap resonance is excited by regular waves with various wave heights, ranging from linear waves to strong nonlinear waves. This paper mainly focuses on the harmonic analyses of the free-surface elevation in the narrow gap and wave loads (including the horizontal wave forces, the vertical wave forces and the moments) on the bodies. It is found that the influences of the incident wave height on the higher-order harmonic components of different physical quantities are quite different. The effects of the incident wave height on the reflection, transmission and energy loss coefficients are also discussed. Finally, aiming at the quantitative estimation of the response time and the damping time of gap resonance, two different methods are proposed and verified for the first time on gap resonance.</p
    • …
    corecore