508 research outputs found

    A one-pass clustering based sketch method for network monitoring

    Get PDF
    Network monitoring solutions need to cope with increasing network traffic volumes, as a result, sketch-based monitoring methods have been extensively studied to trade accuracy for memory scalability and storage reduction. However, sketches are sensitive to skewness in network flow distributions due to hash collisions, and need complicated performance optimization to adapt to line-rate packet streams. We provide Jellyfish, an efficient sketch method that performs one-pass clustering over the network stream. One-pass clustering is realized by adapting the monitoring granularity from the whole network flow to fragments called subflows, which not only reduces the ingestion rate but also provides an efficient intermediate representation for the input to the sketch. Jellyfish provides the network-flow level query interface by reconstructing the network-flow level counters by merging subflow records from the same network flow. We provide probabilistic analysis of the expected accuracy of both existing sketch methods and Jellyfish. Real-world trace-driven experiments show that Jellyfish reduces the average estimation errors by up to six orders of magnitude for per-flow queries, by six orders of magnitude for entropy queries, and up to ten times for heavy-hitter queries.This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61972409; in part by Hong Kong Research Grants Council (RGC) under Grant TRS T41-603/20-R, Grant GRF-16213621, and Grant ITF ACCESS; in part by the Spanish I+D+i project TRAINER-A, funded by MCIN/AEI/10.13039/501100011033, under Grant PID2020-118011GB-C21; and in part by the Catalan Institution for Research and Advanced Studies (ICREA Academia).Peer ReviewedPostprint (author's final draft

    Causal-Based Supervision of Attention in Graph Neural Network: A Better and Simpler Choice towards Powerful Attention

    Full text link
    Recent years have witnessed the great potential of attention mechanism in graph representation learning. However, while variants of attention-based GNNs are setting new benchmarks for numerous real-world datasets, recent works have pointed out that their induced attentions are less robust and generalizable against noisy graphs due to lack of direct supervision. In this paper, we present a new framework which utilizes the tool of causality to provide a powerful supervision signal for the learning process of attention functions. Specifically, we estimate the direct causal effect of attention to the final prediction, and then maximize such effect to guide attention attending to more meaningful neighbors. Our method can serve as a plug-and-play module for any canonical attention-based GNNs in an end-to-end fashion. Extensive experiments on a wide range of benchmark datasets illustrated that, by directly supervising attention functions, the model is able to converge faster with a clearer decision boundary, and thus yields better performances

    Robust Mid-Pass Filtering Graph Convolutional Networks

    Full text link
    Graph convolutional networks (GCNs) are currently the most promising paradigm for dealing with graph-structure data, while recent studies have also shown that GCNs are vulnerable to adversarial attacks. Thus developing GCN models that are robust to such attacks become a hot research topic. However, the structural purification learning-based or robustness constraints-based defense GCN methods are usually designed for specific data or attacks, and introduce additional objective that is not for classification. Extra training overhead is also required in their design. To address these challenges, we conduct in-depth explorations on mid-frequency signals on graphs and propose a simple yet effective Mid-pass filter GCN (Mid-GCN). Theoretical analyses guarantee the robustness of signals through the mid-pass filter, and we also shed light on the properties of different frequency signals under adversarial attacks. Extensive experiments on six benchmark graph data further verify the effectiveness of our designed Mid-GCN in node classification accuracy compared to state-of-the-art GCNs under various adversarial attack strategies.Comment: Accepted by WWW'2

    AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks

    Full text link
    Transformer-based pre-trained models with millions of parameters require large storage. Recent approaches tackle this shortcoming by training adapters, but these approaches still require a relatively large number of parameters. In this study, AdapterBias, a surprisingly simple yet effective adapter architecture, is proposed. AdapterBias adds a token-dependent shift to the hidden output of transformer layers to adapt to downstream tasks with only a vector and a linear layer. Extensive experiments are conducted to demonstrate the effectiveness of AdapterBias. The experiments show that our proposed method can dramatically reduce the trainable parameters compared to the previous works with a minimal decrease in task performances compared with fine-tuned pre-trained models. We further find that AdapterBias automatically learns to assign more significant representation shifts to the tokens related to the task in consideration.Comment: The first two authors contributed equally. This paper was published in Findings of NAACL 202

    Learning with Free Object Segments for Long-Tailed Instance Segmentation

    Full text link
    One fundamental challenge in building an instance segmentation model for a large number of classes in complex scenes is the lack of training examples, especially for rare objects. In this paper, we explore the possibility to increase the training examples without laborious data collection and annotation. We find that an abundance of instance segments can potentially be obtained freely from object-centric images, according to two insights: (i) an object-centric image usually contains one salient object in a simple background; (ii) objects from the same class often share similar appearances or similar contrasts to the background. Motivated by these insights, we propose a simple and scalable framework FreeSeg for extracting and leveraging these "free" object foreground segments to facilitate model training in long-tailed instance segmentation. Concretely, we investigate the similarity among object-centric images of the same class to propose candidate segments of foreground instances, followed by a novel ranking of segment quality. The resulting high-quality object segments can then be used to augment the existing long-tailed datasets, e.g., by copying and pasting the segments onto the original training images. Extensive experiments show that FreeSeg yields substantial improvements on top of strong baselines and achieves state-of-the-art accuracy for segmenting rare object categories

    Neuron with Steady Response Leads to Better Generalization

    Full text link
    Regularization can mitigate the generalization gap between training and inference by introducing inductive bias. Existing works have already proposed various inductive biases from diverse perspectives. However, none of them explores inductive bias from the perspective of class-dependent response distribution of individual neurons. In this paper, we conduct a substantial analysis of the characteristics of such distribution. Based on the analysis results, we articulate the Neuron Steadiness Hypothesis: the neuron with similar responses to instances of the same class leads to better generalization. Accordingly, we propose a new regularization method called Neuron Steadiness Regularization (NSR) to reduce neuron intra-class response variance. Based on the Complexity Measure, we theoretically guarantee the effectiveness of NSR for improving generalization. We conduct extensive experiments on Multilayer Perceptron, Convolutional Neural Networks, and Graph Neural Networks with popular benchmark datasets of diverse domains, which show that our Neuron Steadiness Regularization consistently outperforms the vanilla version of models with significant gain and low additional computational overhead.Comment: Accepted by NeurIPS'2
    corecore