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A One-pass Clustering based Sketch Method for Network Monitoring

Yongquan Fu, Lun An, Siqi Shen, Kai Chen, Pere Barlet-Ros

Network monitoring solutions need to cope with increasing
network traffic volumes, as a result, sketch-based monitoring
methods have been extensively studied to trade accuracy for
memory scalability and storage reduction. However, sketches
are sensitive to skewness in network flow distributions due to
hash collisions, and need complicated performance optimization
to adapt to line-rate packet streams.

We provide Jellyfish, an efficient sketch method that performs
one-pass clustering over the network stream. One-pass clustering
is realized by adapting the monitoring granularity from the whole
network flow to fragments called subflows, which not only reduces
the ingestion rate but also provides an efficient intermediate
representation for the input to the sketch. Jellyfish provides the
network-flow level query interface by reconstructing the network-
flow level counters by merging subflow records from the same
network flow. We provide probabilistic analysis of the expected
accuracy of both existing sketch methods and Jellyfish. Real-
world trace-driven experiments show that Jellyfish reduces the
average estimation errors by up to six orders of magnitude for
per-flow queries, by six orders of magnitude for entropy queries,
and up to ten times for heavy-hitter queries.

Index Terms—subflow, sketch, hash collision, clustering, heavy
hitter

I. INTRODUCTION

Network monitoring is of paramount importance for traffic
engineering, network diagnosis, network forensics, and intru-
sion detection and prevention in clouds and data centers, which
needs diverse measurement tasks [1], [2], such as flow size
estimation, flow distribution, and heavy hitter detection. Yet,
network monitoring is challenging due to the ever-increasing
line rates, massive traffic volumes, and large number of active
flows.

Network-monitoring tasks require advanced data structures
and algorithms. Many space- and time-efficient approaches
have been proposed in the literature, e.g., traffic sampling (e.g.,
Netflow, sflow), traffic counting [3], [4], traffic sketching [5],
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[6], [7]. Traffic sketching is an increasingly popular method
due to their better trade-off between space requirements and
capability of ingesting all packet records to a constant-size
data structure.

The sketch maps each incoming packet to a bucket in the
bucket array, which is indexed by the hash of the corre-
sponding network flow identifier. Thus all packets from the
same network flow would be mapped to the same bucket,
which approximately preserves the network-flow counter. Hash
collisions are prevalent in the sketch, which are caused by
mapping multiple keys to the same sketch entries. Due to
the randomness of the hash functions, the probability of hash
collisions increases as more keys are hashed into the fixed-size
data structure.

The sketch-based network monitoring process incurs a high
degree of approximation errors, thus the common approach is
to either enlarge the size of the sketch structure, or to maintain
multiple independent sketching instances for the purpose of
choosing the sketch entries with the fewest hash collisions.
Yet, real-world traffic distributions are usually non-uniform,
so that the approximation errors are likely to be amplified by
the long tails of network-flow distributions.

A natural question to ask is whether we can reduce the
approximation errors by replacing key-based hashing process
with smart locality-sensitive mapping methods. Several ap-
proaches [8], [9] proposed to separate large network flows
from the rest to reduce the peak estimation error. LSS [10]
maps similar network counters to the same bucket array in
order to reduce the approximation error. Unfortunately, as
the network flow counters keep increasing, it is challenging
to track exact sizes of all active network flows in the main
memory, and dynamically map them to different buckets
according to their sizes.

This paper proposes the subflow, an aggregated metric
composed of a subset of packets from the same network flow.
The granularity of the subflow can be adjusted with a flexible
threshold parameter that bounds the maximal subflow counter.
Reducing the thresholds smooths the subflow distributions, but
increases the number of subflow records for reconstructing the
network-flow level counters. As a result, we can set suitable
subflow thresholds for different network-flow distributions.

Replacing network-flow level sketching with subflow-level
sketching is non-trivial. A strawman approach for subflow-
based sketching is to use conventional sketching methods
such as count-min [11] and count-sketch [12] methods. Our
experiments in Subsection V-B show that these sketching
methods still incur a high degree of approximation errors, since
truncated subflow counters are still non-uniform.

We next propose Jellyfish, a subflow stream sketching
framework. First, Jellyfish generates subflow records from
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TABLE I
KEY NOTATIONS.

Notation Meaning
I Bucket array
X Network-flow counters
X̂ Estimated network-flow counters
A Indicator matrix of mapping X to I
N Number of keys
k Number of cluster centers
m Number of buckets
τ Subflow threshold
fs Cardinality of subflows of a network flow

packet streams with a high-performance hash table. Second,
Jellyfish maps similar subflow counters to the same bucket
array. Third, Jellyfish postpones the reconstruction of the
network flow counter during the query process, where each
network-flow counter is calculated by the sum of subflow
counters estimated from the bucket array for the same network
flow.

We perform extensive evaluation in Section V. Real-world
trace-driven experiments show that Jellyfish outperforms state-
of-the-art sketching methods, with up to 106× reduction in
average relative errors for per-flow queries, 106× reduction
in average relative errors for entropy queries, and up to
10× reduction in average F1 scores for heavy-hitter queries.
Further, Jellyfish delivers messages within 60ms in most cases,
thus the message bus based decoupled sketching framework
provides timely delivery in most time.

We summarize our contributions as follows: (i) We present a
subflow sketching method Jellyfish. (ii) We present a subflow
based network monitoring framework that generates tunable
subflow records from packet streams and decouples the sketch
structure from the ingestion components to adapt it to the line
rates. (iii) We conduct extensive experiments with real-world
data sets to show that the proposed sketch method obtains
accurate and robust estimation results.

The rest of the paper is organized as follows. Sec. II
summarizes related studies on sketch-based network monitor-
ing methods and provides the problem model on the sketch-
based network flow monitoring process. Sec. III next presents
a practical subflow-stream sketch. Sec. IV presents the im-
plementation details. Sec. V conducts extensive performance
evaluation with real-world datasets. We finally conclude in
Sec. VI. Table I lists key notations.

II. PROBLEM STATEMENT

We present the background for the network monitoring
process, and the related work that are most related with us.
We next analyze the challenges of the sketching approaches.

A. Sketch based Network Monitoring

For a cloud data center with hundreds of heterogeneous
physical and virtual network devices and links, we would
like to track network-flow distributions and detect potential
network heavy hitters for anomaly detection in real-time.
There are two schemes for network monitoring on network
flows. For the sequence based sliding window, each interval

Fig. 1. Insertion (I = AT ·X) and query (X̂ = A · I) processes of a list of
network-flow counters X over a bucket array I .

keeps at most N flow records, and a new interval is generated
afterwards; while for a time based window, each interval
records the packets during a fixed time period, and a new
interval is created after the interval ends. Although these
network devices typically provide Netflow or sflow records,
the monitoring output is too coarse for real-time monitoring
and diagnosis purpose. A more suitable approach would track
approximate network flow counters in near real time at low
memory footprint.

A network flow is typically represented as a key-value pair,
where the key is defined as the composition of several essential
packet-header fields, and the value is defined as the flow’s
current statistics, e.g., number of packets or flow bytes. A
sketch-based monitor inspects the packet header to extract
the key and calculate the packet’s value, then inserts this
record to the sketch data structure. A sketch-based monitoring
application typically comprises an ingestion component that
intercepts incoming packets from the physical network inter-
face and generates key-value input for the sketch, a sketching
component that feeds the key-value input to a sketch structure
that approximates these key-value pairs with one or multiple
hash based bucket arrays.

A sketch typically consists of a bank k of bucket arrays of
length m, where a bucket keeps a counter field. In order to
insert an incoming key to the sketch, we first hash the key
to k random numbers within the interval from one to m with
k independent random hash functions, then select the buckets
indexed by these random numbers from k banks, and finally
adjust the counters of these buckets based on the value of the
incoming key. The query process is similar to the insertion
process based on the same set of hash functions.

Suppose that a sketch structure randomly maps incoming
items to a bucket array uniformly at random. Let X : N × 1
denote the vector of the streaming key-value sequence from
the network ingestion component. Let A : N ×m denote the
indicator matrix of mapping the vector X to a bucket array a
of size m× 1. Let A(i, j) = 1 iff the i-th item Xi is mapped
to the j-th bucket Ij , and A(i, l) = 0 for l ̸= j, l ∈ [1,m].
A sketch with one bucket array consists of two phases: the
insertion process solves I =

(
ATX

)
, while the query phase

solves X̂ = A·I , as shown in Figure 1. Thus the approximated
counters of a sketch can be represented as:

X̂ = AATX (1)

We can formulate the approximation error between X and
X̂ for the sketch:

min
A

∥∥∥X − X̂
∥∥∥ =

∥∥X −AATX
∥∥ (2)
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where ∥·∥ denotes a chosen metric such as the Frobenius norm.
To derive optimized solution for Eq (2), assuming that the
mapping matrix is a random variable, the Principle Component
Analysis (PCA) [13] finds a dimensional-reduction hyperplane
with the smallest reconstruction error for a one hidden-layer
autoencoder. Unfortunately, it will require to keep the whole
stream X , which is infeasible for network monitoring context.
Moreover, PCA calculates a dense matrix A, while the sketch
enforces the matrix A to be ultra-sparse.

As we hope to represent the traffic records with low storage
overhead, the size of the sketch should be on the orders of
magnitude smaller than the number of flow records. Otherwise,
the sketch becomes less space-efficient. We can show that
(Lemma 1) the hash collisions for each item in the stream
follows a binomial distribution B(N−1

m ,
(N−1)·(1− 1

m )
m ). The

proofs are put in the appendix fore brevity and henceforth.

Lemma 1. Let ϱi denote the number of hash collisions with
item i. The variable ϱi follows the binomial distribution
with expectation E [ϱi] = N−1

m , and variance V ar [ϱi] =
(N−1)·(1− 1

m )
m .

B. Related Work

The sketch has received extensive attentions due to their
competitive trade off between space resource consumption and
query efficiency. To reduce the approximation error, a popular
trick is to choose the least affected bucket from multiple copies
of independent bucket arrays as the estimator. UnivMon [6]
uses an array of sketch counters to meet generic monitoring
tasks. SketchVisor [14] augments the sketch with a fast-path
ingestion path to tolerate bursty traffic. ElasticSketch [8] keeps
heavy hitters separately with a hash table, and puts the rest of
items to a count-min sketch. Thus it is less sensitive to heavy
hitters compared to prior sketch structures [12], [11], [15].
SketchLearn [9] separates large flows from the rest based on
inferred flow distributions, which incurs additional processing
delay for each packet. Nitrosketch [16] reduces the insertion
frequency to relieve the processing delay, but introduces
uncertainty on the sketching results. OmniMon [17] seeks full
accuracy and resource efficiency over collaborated network
entities. LSS [10] applies a cluster-preserving approach to
reduce the estimation error, by guaranteeing that each network
flow is always mapped to the closest cluster. Thus, to process
packet streams like traditional synopsis, LSS maintains an
in-memory cache for active network flows and dynamically
adjusts the clusters for these network flows. Our work dramat-
ically improves the prediction accuracy and memory efficiency
using a subflow clustering based sketch method, which avoids
the need of adjusting the buckets for active network flows.
When full-coverage is hard to reach, Jang et al. [18] presented
efficient sampling techniques to preserve important packets to
reduce the information loss, which is complementary to full-
coverage packet measurements.

C. Challenges

A sketch-based streaming should meet monitoring accuracy
and performance needs.

1) Sketch Approximation via Clustering
The sketch can be viewed as a clustering model. We define

a least-square loss function based on Eq (2) by allowing
for different mapping matrices for the insertion and query
processes:

min
B

∥∥X −BATX
∥∥ (3)

where A denotes the mapping matrix of the insertion process.
We next show that this modified loss function is equivalent to
the K-means clustering model.

Lemma 2. The minimum-error approximation in Eq (3) is
equivalent to that the K-means clustering problem that seeks
to partition items to a set of groups with minimal variance.

Based on the clustering interpretation, we see that the
mapping matrix A in a sketch can be seen as the clustering
indicator in the K-means clustering model. Suppose that we
pre-train the mapping matrix A to group similar items to the
same bucket, then we the average of the bucket counter, i.e.,
the cluster centroid will approximate the original items closely
compared to methods ignoring the similarity between item
counters.

However, clustering over packet streams is challenging.
For each incoming packet of a network flow, we have to
accumulate this network-flow counter and dynamically adjust
the clustering decision for this network flow, since we should
guarantee that this network-flow counter is always mapped to
the nearest cluster center. The cost of updating these network-
flow counters is proportional to the line rates, which does not
scale well.

2) Relative Errors and Hash Collisions
Generally, we can quantify the expected number of noisy

buckets that have hash collisions. Assume that each key is
mapped to a bucket in each bank uniformly at random with
the hash function. As Lemma 3 shows that, the probability of
hash collisions increases fast with decreasing ratios between
the number of buckets and the number of inserted keys.

Lemma 3. Let m denote the number of buckets, N the number
of unique keys. For a sketch with c banks of bucket arrays,
where each bucket array is of size m

c , the expected percent of
noisy buckets is 1− e−cN/m − cN

m · e−c(N−1)/m.

We provide lower bounds for both the expectation and the
variance of the sum of the approximation errors as follows:

Lemma 4. Let µ, σ2 denote the expectation and the variance
of the records in X , respectively. The sum of the approximation
errors in a bucket array satisfies that: (i) the lower bound of
its expectation is µ(N

2

m −N), and (ii) the lower bound of its
variance is σ2(N

2

m −N).

We see that the variance of the approximation error is
several times of the variance of the whole stream when
m ≪ N . Therefore, in order to increase the approximation
accuracy, we need to mitigate the variance of items that are
mapped to the same bucket array.
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III. JELLYFISH: SUBFLOW SKETCH

Having presented the background and challenges for sketch
based measurements, we next present the subflow model and
the Jellyfish framework, and then present strawman approaches
based on popular sketch methods. Next, we present the in-
sertion and query operations. Finally, we present sketching
applications and the performance analysis.

A. Design Goals

Jellyfish seeks to reduce the approximation error by clus-
tering and and improve the sketching efficiency by subflow
modeling of raw packets that decouples the packet arrival rate
with the sketch data structure.

(i) Robust over network flow distributions with online clus-
tering model. The variance of prior sketches is sensitive to
incoming flowkeys. While a small number of outlier flowkeys
can significantly increase both the trend and the variance
of the approximation error for many buckets. As the sketch
is equivalent to a clustering process, we can reduce the
estimation variance by group similar flowkeys to the same
bucket array with clustering algorithms. However, clustering
dynamic flowkeys is challenging since the distribution is
nondeterministic in general. As a result, we need a scalble
approach to bound the distribution of dynamic flowkeys for
efficient and online clustering.

(ii) Supporting diverse sketching innovations with a subflow
model. It is inefficient to cluster dynamic packets due to du-
plicated network flow records embedded in the packet stream.
In contrast, we can create subflow record that aggregates a
bounded number of packets and cluster static subflow records
without the concerns of duplicates of network flow records.
Moreover, the sketch can adapt to the scale of flowkeys, not
packet rates, as the packet rate is typically much smaller than
the network-flow rate. Thus the subflow records leave plenty
of algorithmic innovations for sketches.

B. Subflow Ingestion

The subflow ingestion framework puts aggregated records of
fragments of network flows to the stream of subflow records. A
subflow represents an aggregated key-value record for a subset
of consecutive packets from the same network flow, where
the key identifies this subflow, and the value accumulates the
counters of these packets.

1) Subflow Naming and Membership
A subflow-tracker is responsible to keep the membership

of subflows for different network flows. We need to name
each subflow record and link the subflow records to different
network flows.

First, we identify each subflow record by appending a
monotonically-ascending index function Index(x) to the origi-
nal network-flow record x. Thus, each subflow record now has
a distinct representation: for a network-flow key x, the subflow
identifier is of the form: recordID(x) = “(x, Index(x))”, where
Index(x) returns a monotonically-increasing index for the
identifier x.

As we use the ascending index to identify each subflow, we
can trivially get the total number of subflow records for each

network flow: We can keep the number of subflow records by
keeping an integer-valued subflow cardinality number fs for
each network flow. The parameter fs accounts for the current
number of subflow records. Suppose that fs amounts to three
for a network-flow x, then we have inserted three subflow
records with keys “(x, 1)”, “(x, 2)”, “(x, 3)”. As the parameter
fs keeps the cardinality of the subflow records for a specific
network flow, thus keeping N network flows just needs N
integer numbers, i.e., linear to the number of network flows.

Second, we use an approximate data structure to keep the
membership of subflows for different network flows in order
to avoid keeping an in-memory cache. We attach a Cuckoo
filter to track the subflow records, and insert the identifiers of
subflow records to the corresponding cuckoo filter in a dy-
namic approach. The cuckoo filter supports efficient insertion
and deletion of items, and is more efficient than the Bloom
filter at low false positives [19], [20], [21]. False positives
occur when multiple subflow records may be mapped to the
same slot in the Cuckoo filter, as we would like to reduce the
storage cost at the expense of introducing a degree of false
positives. We may use more space-optimized data structures
for subflow’s membership, such as the count-min sketch, at
the cost of introducing a degree of approximation errors for
the subflow membership.

As the cuckoo filter keeps every subflow records, we can
obtain the number fs of subflow records for each network
flow by an aggregation approach: It first generate a subflow
index y for each network flow x that is initialized to one
and increases by one at each round, and next concatenate the
subflow identifier as (x, y), and query the cuckoo filter to test
whether this subflow identifier is inserted to this cuckoo filter,
if the cuckoo filter returns true for the subflow membership
query, then we claim that this subflow identifier is in the
cuckoo filter and the variable fs ≥ y and we continue the
query with incremented subflow index y, otherwise, we claim
that fs = y − 1 and returns the subflow record. Knowing fs
immediately enables us to get the set of subflow identifiers. As
a result, we can use query to save the storage of the subflow
cardinality number fs.

2) Subflow Generation
We aggregate packets into the subflow into a key-valued

hash table, based on the threshold constant τ to generate the
subflow record. As long as a subflow’s accumulated counter
exceeds this threshold τ (128 by default) or a maximal waiting
period expires, we publish this subflow immediately. As a
result, the subflow record’s counter is at most τ . The threshold
τ is adjustable to account for the distribution.

The subflow records of all network flows will be clustered
altogether and each cluster will be inserted to the same
Jellyfish bucket array. Thus we need to use the same threshold
for all network flows to ensure low variance of subflow records
in the same bucket array. Identical or similar subflow-valued
records will be clustered to the same bucket array to optimize
the estimation variance. Since the root causes of the estimation
errors are the variance of the input values for Jellyfish.

We need to balance the estimation accuracy and the subflow
storage by the choice of the subflow threshold τ . Reducing
the threshold τ will reduce the range of the variance by
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Fig. 2. The cumulative distribution function (CDF) of the numbers of subflows
per network flow. The x-axis is plotted in logarithmic scale.

Fig. 3. Overall framework of Jellyfish.

subflow records, which increases the estimation accuracy of
Jellyfish. Since Jellyfish needs to track the membership of
subflow records in order to reconstruct a network flow, we
need more storage with increasing numbers of subflow records
as we reduce the threshold τ .

We next count the number of subflows per network flow for
different subflow thresholds τ . Figure 2 shows the cumulative
distribution functions of the numbers of subflows. We see that
over 90% of network flows only have one subflow tuple, since
the majority of network flows are small flows. Further, as we
increase the subflow threshold τ from 32 to 128, 99% of the
numbers of subflows decrements from 13 to 4 for the CAIDA
data set, and decrements from 19 to 5 for the MAWI data set,
respectively.

C. Overview

Jellyfish generates subflow records by aggregating the coun-
ters of a subset of consecutive packets from the same network
flow. Next, Jellyfish clusters similar subflow records to bucket
arrays with respect to an online subflow-clustering model.

Jellyfish puts each subflow record into a bucket array
indexed by the closest cluster center towards this record.
Next, Jellyfish selects a random bucket from this bucket
array, by hashing the subflow key with one hash function,
and accumulates the subflow counter to this bucket. Finally,
Jellyfish reconstructs the counters for each network flow by
estimating each subflow record belonging to this network flow
and merging those to the final estimation result.

Figure 3 shows the overall framework of the Jellyfish based
network monitoring process: Three network flows denoted
as id1, id2 and id3 are divided to subflow records, each of
which consists of four subflow records. The sizes of network

Fig. 4. Key functions in a subflow based network-monitoring architecture.

Algorithm 1: Insert operation on the Jellyfish.
1 Insert(x, v)

input : Network-flow key x, subflow cardinality field
Index(x), subflow counter v.

2 Generate the key κ = (x, Index(x));
3 Find the bucket array index iκ = argmini∥v − µi∥ to the

nearest cluster center;
4 Update the bucket indexed at h (κ): Iiκ [h (κ)] .sum+ = v,

and Iiκ [h (κ)] .count +=1;
5 Insert κ to the iκ-th Cuckoo filter;

flows denoted as id1, id2 and id3 equal the sums of the
corresponding subflow records belonged to the same network
flow, which are 139, 147 and 137, respectively. Subflow
records are clustered based on a clustering model (12, 34, 76).
Each subflow record is mapped to the bucket array indexed
by the nearest cluster center. Next, a bucket is chosen from
this bucket array based on the hash of the subflow identifier
with a hash function. Finally, the sum field of this bucket
is increased by the incoming subflow record, and the count
field of this bucket is incremented by one. The membership of
subflows are kept for query purpose. Step (4): Three network
flows are estimated based on the sum of queried results of the
corresponding subflow records. The estimation results for id1,
id2 and id3 are 138.5, 154 and 130.5, respectively.

From Figure 3, we see that the approximation results closely
match the original network flow counters. Moreover, Jellyfish
does not need an in-memory cache of historical samples, or
a real-time update policy to dynamically adjust the clustering
positions of evolving network flow counters.

Figure 4 summarizes key functions in the subflow-based
network monitoring process with ingestion, membership, in-
sertion and query functions. The ingestion function produces
subflow records. The membership function keeps the mapping
of subflow records to bucket arrays. The insertion function
inserts subflow records to bucket arrays. Finally, the query
function enables the query over network flows.

D. Details of Jellyfish

Jellyfish mixes subflow records into a bucket array. Thus the
physical layout is comprised of a number k of bucket arrays.
A bucket array consists of a number of buckets, where each
bucket has two fields: (i) A sum field that records the sum of
subflow values mapped to this bucket; (ii) A count field that
records the number of subflow records inserted to this bucket.
As each subflow has a unique identifier, thus the count just
increments by one for each incoming subflow record.
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Algorithm 2: Query operation on the Jellyfish.
1 Query(x)

input : network-flow key x.
output: Network-flow counter v.

2 Obtain the cardinality field fs (denoted as xs) of the key x
from the subflow tracker;

3 SumCounter = 0;
4 for j = 1 → xs do
5 Generate the key κ = (x, j);
6 Obtain the bucket-array index iκ for κ in the bank of

Cuckoo filters;
7 SumCounter + = Iiκ [h(κ)].sum

Iiκ [h(κ)].count
;

8 return SumCounter;

1) Insert
Based on the equivalence between the sketch and the

clustering analysis in Sec. II-C1, Jellyfish maps each subflow
record (x, v) to the nearest cluster center with respect to v.
We present the insertion process in Algorithm 1. We select the
bucket array corresponding to the cluster index of the incoming
record x, then we find a bucket in this bucket array with the
hash of the key κ = recordID(x), and increment the counter of
the mapped bucket by the hash of the key κ with the subflow
counter v: sum = sum + v, and count = count + 1.

Time Complexity: The time to query the nearest cluster
center is O(log k) with a binary search tree over the sorted
array of k cluster centers. Next, we need one hashing eval-
uation to locate a bucket in a single bucket array. Finally,
we insert the subflow key to the corresponding Cuckoo filter,
which can be run concurrently with the bucket array.

During the insertion phase, Jellyfish avoids the maintenance
of the volatile network-flow counters in memory, and does not
need to adjust the mapping between network flows and the
clustering model as well as the bucket arrays. The downside
of these benefits, is that Jellyfish needs to save the subflow
membership instead of the network-flow membership.

2) Query
We next present the query process in Algorithm 2. For a

network-flow key x, we first query the cardinality field fs for
key x via the subflow tracker, then we construct the set of keys
KEY s(x): “(x, 1)”, “(x, 2)”, . . . , “(x, fs)”. Next, for each
key y in KEY s(x), we locate the index of the bucket array by
querying the Cuckoo filter associated with each bucket array.
Next, we select the bucket in the corresponding bucket array
with the hash of the key, and return the division sum

count as the
approximate counter for this key y. Finally, we calculate the
sum of approximate counters for each key in KEY s(x), and
return this number as the counter for the network flow x.

The locations of different subflow keys are independently
kept by the cuckoo filter. Suppose that two subflow records of
the same network flow are put to the same bucket in varying
orders, then Jellyfish will correctly keep the locations of these
subflow records in different cuckoo filter records. Jellyfish can
correctly recover the counters afterwards: it will first locate the
index of two subflow records based on the cuckoo filter and
the hash value of two subflow keys, and then calculate the
averaged number of the bucket and accumulate these counters

of two subflow records since both belong to the same network
flow.

Time Complexity: During the query phase, we need to
obtain the index for each of the subflow key by querying the
bank of the Cuckoo filters at O(kfs) time with respect to k
bucket arrays and fs subflow records. As the query phase is
not in the critical path of the network-monitoring application,
the speed of the query phase is much less important than that
of the insertion phase.

The query process satisfies the eventual consistency model
[22]: if no new subflow records are generated to a given
network flow, then eventually all queries to this network flow
will return the result calculated after the last updated value.
The eventual consistency ensures the correctness of the query
process for network flows. As most network flows are short,
over 90% of network flows have less than ten subflow records,
the delay to reach the eventual consistency is short for most
network flows.

Large network flows may have additional subflow records
temporally maintained by the ingestion component, but are not
yet inserted to the sketch. Thus the sketch returns the results
for outstanding network flows by the last insertion. As a result,
we need to combine the results of both the sketch and the hash-
table values at the ingestion component, in order to provide
real-time result for the corresponding network flow: First, we
query the sketch to obtain the network-flow estimation counter
from the last insertion. Second, we query the hash table via the
network-flow identifier. Third, we sum up these two counters
as the estimation result for the network flow counter.

E. One-pass Online Clustering Model

As we fix the subflow threshold, the network flow distribu-
tion is bounded. Online clustering is desirable over an offline
clustering model that may not be outdated. As it is costly
to create a new clustering model before each measurement
period. We maintain the subflow clustering model based the
K-means clustering method that consists of k cluster centers,
due to its simplicity and equivalence to the sketch setting
[10]. Let S denote the set of one-dimensional samples. Let
the distance measure between two sample x and y (x, y ∈ S)
be the absolute difference cost(x, y) = |x− y|.

Definition 1. The online clustering model maintains a
set of k points (called centers) denoted as µ to mini-
mize the variance of values within each cluster: ϕ(S, µ) =∑

x∈S minc∈µ(cost(x, c))
2. The number k of centers controls

the number of clusters.

To adapt to dynamic network flow distributions, we find an
online approximate solution to the clustering model to adjust
the cluster centers to up-to-date subflow records. We keep an
online set of cluster centers based on k-means++ [23] with a
log k-factor multiplicative approximation to the optimal cluster
loss.

F. Sketching Applications

The query function performs monitoring queries on sketches
from the sketching function with network-flow keys from
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the membership function. Typical queries include: (a) Per-
flow frequency and entropy query. They track the traffic
volume of each distinct flow, or count the flow bytes. To
query the size distribution of each inserted flow, we iteratively
obtain approximation results with identifiers of inserted flows,
then we build a list of approximated flow sizes as the flow
size distribution. Similarly, we derive the entropy metric as
the frequency distribution of approximated flow sizes. (b)
Heavy hitters. Jellyfish enables the heavy hitter of top-K
flows ingesting the most traffic volumes. For a given heavy-
hitter detection threshold, we directly list those buckets whose
averaged counters exceeds the threshold, since approximated
values of inserted flows are derived from the averaged counters
of buckets. Next, we query the cuckoo filters to obtain the
list of network flows that map to these buckets, as subflow
keys can be queried over the cuckoo filter. Based on heavy
hitters, we can also find flows spanning multiple windows
that fluctuate beyond a predefined threshold, i.e., the heavy
changes.

Jellyfish allows for a versatile robust monitoring applica-
tion for distributed networked environments. Each Jellyfish
instance continuously accepts new records from a wide range
of network devices and end hosts across multiple measurement
intervals as long as the storage of the cuckoo filter is satisfied
in the memory. The continuous sketching results from the
query applications enables long-term accurate network trou-
bleshooting and anomaly detection.

G. Theoretical Analysis

Having presented the Jellyfish method, we next bound the
accuracy of Jellyfish towards the expectation of the ground-
truth values.

Theorem 2. Assume that the l-th key is mapped to the
j-th bucket in the bucket array. Let τ denote the subflow
threshold. Let Query(Xl) denote the estimator of the ground-
truth counters Xl for the l-th network flow in S. Let fs(Xl)
denote the cardinality of subflow records for network-flow Xl.
Then for a given positive variable w, the Jellyfish estimator
satisfies that

Pr (|Query(Xl)− E [Xl]| ≥ fs(Xl)w) ≤
τ2

w2
(4)

As shown in Theorem 2, the estimated counter just deviates
the expectation of the ground-truth counter within a short
interval, which is proportional to the number of subflow
records of each network flow.

IV. IMPLEMENTATION

We implement the Jellyfish sketch in modular blocks based
on a publish/subscribe (Pub/Sub for short) framework. The
ingestion function aggregates packets at line rates to subflow
records [24], and evicts subflow record messages by predefined
threshold τ . The hash table reduces packet-processing delay
by cache prefetching and batch processing.

We increase the processing parallelism for insertion and
query on the data structure. We buffer the insertion and query
requests with two concurrent ring buffer queues. Multiple

threads pull a bulk of insertion and query requests from the
corresponding buffer queue in batches.

We adjust the clustering model in a stream approach: (i)
Initialization. We initialize the clustering model with a set of
subflow samples. The initial samples are collected just once.
(ii) Incremental adjustment. Next, we incrementally obtain
subflow samples to be aware of the variations of subflow
distributions. We keep a sample cache to maintain up to |S|
timestamp record samples. To bound the storage cost, we
attach each sample with a timestamp of the first appearance,
and remove the earliest timestamp record counters. We incre-
mentally adapt the clustering model with respect to samples:
The first cluster center is sampled uniformly at random from
the sample cache, and we sample up to k cluster centers with
replacement for each new subflow sample p with probability

cost({p},µ)∑
q∈S cost({q},µ) . The default number of cluster centers is set

to 30 based on empirical performance. Thus the number of
cluster centers is modest with respect to the scale of subflow
records. The number of clustered subflow samples are set to
a constant number in the same cache. We vary the choice of
samples from 0.1 to one times the number of subflow records
in the measurement interval, and the clustering performance
is stable with respect to the numbers of samples in the cache.

V. EVALUATION

Having presented the Jellyfish method, we next report
experiment results compared to state-of-the-art methods with
real-world data sets. We report key results and put additional
experimental results in the appendix.

A. Experimental Setup

Data sets: We perform a real-world trace-driven experiment
study with two popular data sets: (i) CAIDA: it is collected on
February 18, 2016 at the Equinix-Chicago monitor by CAIDA
[8], with 1799.7 million stream network flows lasting for one
hour. (ii) MAWI: it is collected on May 20, 2019 at the transit
link of WIDE to the upstream ISP [25], with 14.0 million
stream network flows lasting for 899.99 seconds. The source
IP of each stream network flow serves as the network flow’s
key.

Workflow: We split each data set to ten intervals of equal
size. Each interval is replayed to the ingestion function. The
ingestion function publishes subflow tuples to sketching com-
ponents over the Pub/Sub framework. This sketch is queried
by the operator after the interval ends.

Metrics: We evaluate the effectiveness of the sketch meth-
ods with three metrics: (i) Relative error (RE): We use the
relative error to quantify the accuracy of the per-flow query.
It is defined as the mean of the relative error of each queried
network flow. (ii) F1 score: We use the F1 score to quantify
the precision for the heavy-hitter query. It is defined as the
harmonic mean of the precision and the recall values, i.e.,
2PR×RR
PR+RR , where PR (Precision Rate) denotes the percent of

true heavy-hitter instances reported, and RR (Recall Rate)
denotes the percent of found true heavy-hitter instances.

Parameters: We select the default parameters for Jellyfish
based on the sensitivity experiments. We set the default
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Fig. 5. The average of the relative errors for the per-flow query. The y-axis
is plotted in the logarithmic scale.

number of clusters to 30, and the default number of buckets
in Jellyfish to 0.1 times the number of network flows in an
evaluation interval. We set the truncated threshold for subflow
tuples to 128.

The experiments are repeated in ten times, and we report
the average result and the 95-th confidence interval.

B. Comparison

We first compare Jellyfish with state-of-the-art sketching
methods using the same space for fair comparison. We report
average metrics as a function of the total amount of memory
of the sketch physical structure. We keep the membership of
inserted keys with the same set of Cuckoo filters, since all
sketching methods are agnostic of the keys by themselves.

Per-flow Query: We first test the relative errors of the per-
flow query. We compare Jellyfish with five per-flow sketching
methods including count-sketch (CS) [12], cusketch (CU) [3],
count-min (CM) [11], Elastic Sketch (ES) [8] and LSS [10].
Figure 5 shows the relative errors as we vary the bucket storage
from one KB to 100 KB. We see that the relative errors
of Jellyfish and LSS are three to five orders of magnitude
smaller than those of CS, CM, CU and ElasticSketch. Further,
Jellyfish is significantly more accurate than LSS, since the
record distributions in Jellyfish are less skewed than those in
LSS.

Entropy Query: We next compare the relative errors of
the entropy query of Jellyfish with five entropy-sketching
methods including count-min (CM) [11], count-sketch (CS)
[12], Sieving [26], Elastic Sketch (ES) [8] and LSS [10].
Figure 6 shows the relative errors as we vary the sketching
storage from one KB to 100 KB. We see that Jellyfish is
three to six orders of magnitude more accurate than the
other methods. This is due to the fact that Jellyfish clusters
less-skewed subflow records to bucket arrays, which closely
preserves the global distribution of the network-flow counters.

Heavy Hitter: We next compare the F1 scores of the heavy-
hitter query with six heavy-hitter methods including count-min
(CM), count-sketch (CS), Spacesaving (SS) [27], ElasticSketch
(ES), and hashpipe [4] and LSS [10]. We set the threshold
of the heavy hitters to the top-5% of network flows. Figure 7
shows the F1 scores as we increase the sketching storage from
one KB to 100 KB. We see that the F1 scores of both Jellyfish
and LSS are close to one, since the heavy hitters depend on
a small set of the largest network flows, and both methods
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put large items to the same bucket arrays by the clustering
process. While hashpipe, ElasticSketch, SS, CS and CM are
more sensitive to the mixing of small items with large items.

C. Message Latency
We set up the experiments on ten servers in two racks

connected by a 10 Gbps switch, each server is configured
as 8-core Intel(R) Xeon(R) CPU E5-1620, 47 GB memory,
and Intel 10-Gigabit X540-AT2 network card. We choose the
Pulsar messaging system originally created at Yahoo [28] as
the Pub/Sub underlay. We set up the Apache Pulsar 2.2.0
Pub/Sub as a standalone service on a dedicated server. We
split nine servers to two groups: (i) Six servers run the
network ingestion component to produce subflow records
from replayed network trace and publishes to the Pub/Sub
framework; (ii) Three servers run the sketching component to
maintain the sketch data structure by subscribing to each of
six ingestion servers. The sketching component subscribes to
the events published by the ingestion component and feeds
them to the Jellyfish within the same measurement intervals.
We ingest port-mirrored traffic from the switch and feed them
to independent sketching instances in parallel.

We evaluate the latency of delivering messages over the
Pub/Sub message bus. Figure 8 plots the CDFs of the me-
dian, 90-th and 99-th percentiles of the messaging latency
distributions in each measurement interval. We see that most
messages are delivered within 60 ms, thus the Pulsar message
bus provides timely delivery in most time. A small number of
messages may be delivered for more than 100 ms due to the
queueing in the message bus.

VI. DISCUSSION AND CONCLUSION

Discussion: The sketch is equivalent to a clustering pro-
cess that needs complex algorithmic tradeoffs between ac-
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curacy, speed and resource budgets. The need of coping
with line-rate packets increases the resource contentions of
the sketch structure with colocated deployed systems. Many
sketching oriented measurement systems are moving towards
programmable network devices, e.g., P4, FPGA, SmartNIC
and software switches, which embed the sketch data structure
into the programmable packet processing pipelines. As more
and more packets must be inspected, the sketch’s space and
time complexity must be tuned comprehensively to trade off
between the accuracy, speed and query types. However, the
forward pipelines of programmable switches are less coherent
to the real-time feedback loop based operations. As a sketch
only produces flow-level estimation results, Jellyfish feeds
subflow-level record streams to the sketch data structures,
which are kept at distributed resource-rich nodes that allow
for flexible algorithmmic innovations for the sketching design.

Conclusion and Future Work: We present a locality-
sensitive subflow sketching method Jellyfish based on subflow-
clustering model. Real-world data sets based experiments show
that Jellyfish significantly reduces the per-flow query errors
by orders of magnitude with low variance within bucket
arrays. The implementation is publicly available 1. We plan
to find more space-optimized data structures to track subflow
membership.
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