12,202 research outputs found

    Communication over Finite-Chain-Ring Matrix Channels

    Full text link
    Though network coding is traditionally performed over finite fields, recent work on nested-lattice-based network coding suggests that, by allowing network coding over certain finite rings, more efficient physical-layer network coding schemes can be constructed. This paper considers the problem of communication over a finite-ring matrix channel Y=AX+BEY = AX + BE, where XX is the channel input, YY is the channel output, EE is random error, and AA and BB are random transfer matrices. Tight capacity results are obtained and simple polynomial-complexity capacity-achieving coding schemes are provided under the assumption that AA is uniform over all full-rank matrices and BEBE is uniform over all rank-tt matrices, extending the work of Silva, Kschischang and K\"{o}tter (2010), who handled the case of finite fields. This extension is based on several new results, which may be of independent interest, that generalize concepts and methods from matrices over finite fields to matrices over finite chain rings.Comment: Submitted to IEEE Transactions on Information Theory, April 2013. Revised version submitted in Feb. 2014. Final version submitted in June 201

    Exposure to the Dental Environment and Prevalence of Respiratory Illness in Dental Student Populations

    Get PDF
    Objective: To determine if the prevalence of respiratory disease among dental students and dental residents varies with their exposure to the clinical dental environment. Methods: A detailed questionnaire was administered to 817 students at 3 dental schools. The questionnaire sought information concerning demographic characteristics, school year, exposure to the dental environment and dental procedures, and history of respiratory disease. The data obtained were subjected to bivariate and multiple logistic regression analysis. Results: Respondents reported experiencing the following respiratory conditions during the previous year: asthma (26 cases), bronchitis (11 cases), chronic lung disease (6 cases), pneumonia (5 cases) and streptococcal pharyngitis (50 cases). Bivariate statistical analyses indicated no significant associations between the prevalence of any of the respiratory conditions and year in dental school, except for asthma, for which there was a significantly higher prevalence at 1 school compared to the other 2 schools. When all cases of respiratory disease were combined as a composite variable and subjected to multivariate logistic regression analysis controlling for age, sex, race, dental school, smoking history and alcohol consumption, no statistically significant association was observed between respiratory condition and year in dental school or exposure to the dental environment as a dental patient. Conclusion: No association was found between the prevalence of respiratory disease and a student\u27s year in dental school or previous exposure to the dental environment as a patient. These results suggest that exposure to the dental environment does not increase the risk for respiratory infection in healthy dental health care workers

    Synthesizing Ti–Ni Alloy Composite Coating on Ti–6Al–4V Surface from Laser Surface Modification

    Get PDF
    In This Work, a Ni-Alloy Deloro-22 Was Laser-Deposited on a Ti–6Al–4V Bar Substrate with Multiple Sets of Laser Processing Parameters. the Purpose Was to Apply Laser Surface Modification to Synthesize Different Combinations of Ductile TiNi and Hard Ti2Ni Intermetallic Phases on the Surface of Ti–6Al–4V in Order to Obtain Adjustable Surface Properties. Scanning Electron Microscopy, Energy Dispersion Spectroscopy, and X-Ray Diffraction Were Applied to Reveal the Deposited Surface Microstructure and Phase. the Effect of Processing Parameters on the Resultant Compositions of TiNi and Ti2Ni Was Discussed. the Hardness of the Deposition Was Evaluated, and Comparisons with the Ti–6Al–4V Bulk Part Were Carried Out. They Showed a Significant Improvement in Surface Hardness on Ti–6Al–4V Alloys after Laser Processing, and the Hardness Could Be Flexibly Adjusted by using This Laser-Assisted Surface Modification Technique

    Measuring the world city network: new results and developments

    Get PDF

    Laser Metal Deposition of an AlCoCrFeNiTi₀.₅ High-Entropy Alloy Coating on a Ti6Al4V Substrate: Microstructure and Oxidation Behavior

    Get PDF
    Ti6Al4V has been recognized as an attractive material, due to its combination of low density and favorable mechanical properties. However, its insufficient oxidation resistance has limited the high-temperature application. In this work, an AlCoCrFeNiTi0.5 high-entropy alloy (HEA) coating was fabricated on a Ti6Al4V substrate using laser metal deposition (LMD). The microstructure and isothermal oxidation behaviors were investigated. The microstructure of as-deposited HEA exhibited a Fe, Cr-rich A2 phase and an Al, Ni, Ti-enriched B2 phase. Its hardness was approximately 2.1 times higher than that of the substrate. The oxidation testing at 700⁰C and 800⁰C suggested that the HEA coating has better oxidation resistance than the Ti6Al4V substrate. The oxide scales of the Ti6Al4V substrate were mainly composed of TiO2, while continuous Al2O3 and Cr2O3 were formed in the HEA coatings and could be attributed to oxidation resistance improvement. This work provides an approach to mitigate the oxidation resistance of Ti6Al4V and explore the applicability of the HEA in a high-temperature environment

    A Review on Metallic Alloys Fabrication using Elemental Powder Blends by Laser Powder Directed Energy Deposition Process

    Get PDF
    The laser powder directed energy deposition process is a metal additive manufacturing technique, which can fabricate metal parts with high geometric and material flexibility. The unique feature of in-situ powder feeding makes it possible to customize the elemental composition using elemental powder mixture during the fabrication process. Thus, it can be potentially applied to synthesize industrial alloys with low cost, modify alloys with different powder mixtures, and design novel alloys with location-dependent properties using elemental powder blends as feedstocks. This paper provides an overview of using a laser powder directed energy deposition method to fabricate various types of alloys by feeding elemental powder blends. At first, the advantage of laser powder directed energy deposition in manufacturing metal alloys is described in detail. Then, the state-of-the-art research and development in alloys fabricated by laser powder directed energy deposition through a mix of elemental powders in multiple categories is reviewed. Finally, critical technical challenges, mainly in composition control are discussed for future development

    A right-handed isotropic medium with a negative refractive index

    Full text link
    The sign of the refractive index of any medium is soley determined by the requirement that the propagation of an electromagnetic wave obeys Einstein causality. Our analysis shows that this requirement predicts that the real part of the refractive index may be negative in an isotropic medium even if the electric permittivity and the magnetic permeability are both positive. Such a system may be a route to negative index media at optical frequencies. We also demonstrate that the refractive index may be positive in left-handed media that contain two molecular species where one is in its excited state.Comment: 4.1 pages, 4 figures, submitted to Physical Review Letter

    Comparison of Fatigue Performance between Additively Manufactured and Wrought 304L Stainless Steel using a Novel Fatigue Test Setup

    Get PDF
    In this research, a novel adaptive controlled fatigue testing machine was designed for bending type high cycle fatigue test. A unique dual gauge section Krouse type mini specimen was designed for simply supported transverse bending. Displacement controlled fatigue tests were implemented using an electromechanical actuator. The variation in the control signal and load observed during the test provides unique insights into realizing the deterioration of the specimen due to fatigue. These analyses were utilized to compare the fatigue performance of wrought and additively manufactured 304L stainless steel. The influence of the build direction on fatigue performance was also investigated by testing specimens with 0, 45, and 90 degrees build direction. These comparisons were carried out at different levels of displacement amplitude

    Controlling “chemical nose” biosensor characteristics by modulating gold nanoparticle shape and concentration

    Get PDF
    Verma, M. S., Chen, P. Z., Jones, L., & Gu, F. X. (2015). Controlling “chemical nose” biosensor characteristics by modulating gold nanoparticle shape and concentration. Sensing and Bio-Sensing Research, 5, 13–18. https://doi.org/10.1016/j.sbsr.2015.04.007Conventional lock-and-key biosensors often only detect a single pathogen because they incorporate biomolecules with high specificity. “Chemical nose” biosensors are overcoming this limitation and identifying multiple pathogens simultaneously by obtaining a unique set of responses for each pathogen of interest, but the number of pathogens that can be distinguished is limited by the number of responses obtained. Herein, we use a gold nanoparticle-based “chemical nose” to show that changing the shapes of nanoparticles can increase the number of responses available for analysis and expand the types of bacteria that can be identified. Using four shapes of nanoparticles (nanospheres, nanostars, nanocubes, and nanorods), we demonstrate that each shape provides a unique set of responses in the presence of different bacteria, which can be exploited for enhanced specificity of the biosensor. Additionally, the concentration of nanoparticles controls the detection limit of the biosensor, where a lower concentration provides better detection limit. Thus, here we lay a foundation for designing “chemical nose” biosensors and controlling their characteristics using gold nanoparticle morphology and concentration
    corecore