18 research outputs found

    Pseudogap and weak multifractality in disordered Mott charge-density-wave insulator

    Full text link
    The competition, coexistence and cooperation of various orders in low-dimensional materials like spin, charge, topological orders and charge-density-wave has been one of the most intriguing issues in condensed matter physics. In particular, layered transition metal dichalcogenides provide an ideal platform for studying such an interplay with a notable case of 1T{T}-TaS2_{2} featuring Mott-insulating ground state, charge-density-wave, spin frustration and emerging superconductivity together. We investigated local electronic states of Se-substituted 1T{T}-TaS2_{2} by scanning tunneling microscopy/spectroscopy (STM/STS), where superconductivity emerges from the unique Mott-CDW state. Spatially resolved STS measurements reveal that an apparent V-shape pseudogap forms at the Fermi Level (EF_{F}), with the origin of the electronic states splitting and transformation from the Mott states, and the CDW gaps are largely preserved. The formation of the pseudogap has little correlation to the variation of local Se concentration, but appears to be a global characteristics. Furthermore, the correlation length of local density of states (LDOS) diverges at the Fermi energy and decays rapidly at high energies. The spatial correlation shows a power-law decay close to the Fermi energy. Our statistics analysis of the LDOS indicates that our system exhibits weak multifractal behavior of the wave functions. These findings strongly support a correlated metallic state induced by disorder in our system, which provides an new insight into the novel mechanism of emerging superconductivity in the two-dimensional correlated electronic systems

    Magnetic anisotropy reversal driven by structural symmetry-breaking in monolayer {\alpha}-RuCl3

    Full text link
    Layered {\alpha}-RuCl3 is a promising material to potentially realize the long-sought Kitaev quantum spin liquid with fractionalized excitations. While evidence of this exotic state has been reported under a modest in-plane magnetic field, such behavior is largely inconsistent with theoretical expectations of Kitaev phases emerging only in out-of-plane fields. These predicted field-induced states have been mostly out of reach due to the strong easy-plane anisotropy of bulk crystals, however. We use a combination of tunneling spectroscopy, magnetotransport, electron diffraction, and ab initio calculations to study the layer-dependent magnons, anisotropy, structure, and exchange coupling in atomically thin samples. Due to structural distortions, the sign of the average off-diagonal exchange changes in monolayer {\alpha}-RuCl3, leading to a reversal of magnetic anisotropy to easy-axis. Our work provides a new avenue to tune the magnetic interactions in {\alpha}-RuCl3 and allows theoretically predicted quantum spin liquid phases for out-of-plane fields to be more experimentally accessible

    A Shortest-Path-Based Method for the Analysis and Prediction of Fruit-Related Genes in <i>Arabidopsis thaliana</i>

    No full text
    <div><p>Biologically, fruits are defined as seed-bearing reproductive structures in angiosperms that develop from the ovary. The fertilization, development and maturation of fruits are crucial for plant reproduction and are precisely regulated by intrinsic genetic regulatory factors. In this study, we used <i>Arabidopsis thaliana</i> as a model organism and attempted to identify novel genes related to fruit-associated biological processes. Specifically, using validated genes, we applied a shortest-path-based method to identify several novel genes in a large network constructed using the protein-protein interactions observed in <i>Arabidopsis thaliana</i>. The described analyses indicate that several of the discovered genes are associated with fruit fertilization, development and maturation in <i>Arabidopsis thaliana</i>.</p></div

    Procedures of and results obtained using the shortest-path-based method for the identification of novel fruit-related genes in <i>Arabidopsis thaliana</i>.

    No full text
    <p>Procedures of and results obtained using the shortest-path-based method for the identification of novel fruit-related genes in <i>Arabidopsis thaliana</i>.</p
    corecore