6,376 research outputs found
Recommended from our members
Implications of the recent fluctuations in the growth rate of tropospheric methane
Global measurements show that the mixing ratio of tropospheric methane (CH4) increased by 1.1% (19.5 ± 1.7 ppbv) over the five-year period 1996-2000, with striking fluctuations in its annual growth rate. Whereas the global CH4 growth rate reached 15.9 ± 0.7 ppbv yr-1 in 1998, the growth rate was -2.1 ± 0.8 ppbv yr-1 in 2000. This is the first time in our 23-year global monitoring program that we have measured a negative annual CH4 growth rate. The CH4 growth rate fluctuates in an unpredictable fashion, and we reemphasize that global CH4 concentrations cannot be extrapolated into the future based on past trends. As a result, we suggest that the slowing of the CH4 growth rate during much of the 1980s and 1990s cannot be used to imply that CH4 will no longer be of concern in greenhouse gas studies during this century
Recommended from our members
Impact of the leakage of liquefied petroleum gas (LPG) on Santiago air quality
Recommended from our members
Estimation of global vehicular methyl bromide emissions: Extrapolation from a case study in Santiago, Chile
Between June 1 and June 8, 1996, 144 whole air samples were collected in Santiago, Chile. The temporal and geographical enhancement of CH3Br correlated with incomplete combustion tracers emitted from vehicles during the morning commute. From these, a city-wide CH3Br/CO volume emission ratio of 2.2 × 10-6 was measured in ambient air. Without using the CO measurements, we estimate an annual release of 8.9 tons of CH3Br in Santiago based solely upon enhanced concentrations observed throughout the study area during the morning traffic period. This enhancement corresponds to 8.0 × 10-6 kg CH3Br emitted for each liter of gasoline used (leaded and unleaded). By scaling the annual gasoline usage in Santiago to countries still using leaded gasoline, and assuming the above 8.0 × 10-6 kg/L value holds true, a global vehicular CH3Br emission of 4 ± 3 Gg/year is calculated. This small vehicular CH3Br emission source strength will not improve the current CH3Br budget imbalance
Recommended from our members
Three-dimensional distribution of nonmenthane hydrocarbons and halocarbons over the northwestern Pacific during the 1991 Pacific Exploratory Mission (PEM-West A)
A total of 1667 whole air samples were collected onboard the NASA DC-8 aircraft during the 6-week Pacific Exploratory Mission over the western Pacific (PEM-West A) in September and October 1991. The samples were assayed for 15 C2-C7 hydrocarbons and six halocarbons. Latitudinal (0.5°S to 59.5°N) and longitudinal (114°E to 122°W) profiles were obtained from samples collected between ground level and 12.7 km. Thirteen of the 18 missions exhibited at least one vertical profile where the hydrocarbon mixing ratios increased with altitude. Longitude-latitude color patch plots at three altitude levels and three-dimensional color latitudealtitude and longitude-altitude contour plots exhibit a significant number of middle-upper tropospheric pollution events. These and several lower tropospheric pollution plumes were characterized by comparison with urban data from Tokyo and Hong Kong, as well as with natural gas and the products from incomplete combustion. Elevated levels of nonmethane hydrocarbons (NMHC) and other trace gases in the upper-middle free troposphere were attributed to deep convection over the Asian continent and to typhoon-driven convection near the western Pacific coast of Asia. In addition, NMHCs and CH3CCI3 were found to be useful tracers with which to distinguish hydrocarbon and halocarbon augmented plumes emitted from coastal Asian cities into the northwestern Pacific
Regulation and Function of the Caspase-1 in an Inflammatory Microenvironment.
The inflammasome is a complex of proteins that has a critical role in mounting an inflammatory response in reply to a harmful stimulus that compromises the homeostatic state of the tissue. The NLRP3 inflammasome, which is found in a wound-like environment, is comprised of three components: the NLRP3, the adaptor protein ASC and caspase-1. Interestingly, although ASC levels do not fluctuate, caspase-1 levels are elevated in both physiological and pathological conditions. Despite the observation that merely raising caspase-1 levels is sufficient to induce inflammation, the crucial question regarding the mechanism governing its expression is unexplored. We found that, in an inflammatory microenvironment, caspase-1 is regulated by NF-κB. Consistent with this association, the inhibition of caspase-1 activity parallels the effects on wound healing caused by the abrogation of NF-κB activation. Surprisingly, not only does inhibition of the NF-κB/caspase-1 axis disrupt the inflammatory phase of the wound-healing program, but it also impairs the stimulation of cutaneous epithelial stem cells of the proliferative phase. These data provide a mechanistic basis for the complex interplay between different phases of the wound-healing response in which the downstream signaling activity of immune cells can kindle the amplification of local stem cells to advance tissue repair
Evaluating a web-based social anxiety intervention among community users: Analysis of real-world data
© Hugh Cameron McCall, Fjola Dogg Helgadottir, Ross G Menzies, Heather D Hadjistavropoulos, Frances S Chen. Background: Social anxiety is both harmful and prevalent. It also currently remains among the most undertreated major mental disorders, due, in part, to socially anxious individuals’ concerns about the stigma and expense of seeking help. The privacy and affordability of computer-aided psychotherapy interventions may render them particularly helpful in addressing these concerns, and they are also highly scalable, but most tend to be only somewhat effective without therapist support. However, a recent evaluation of a new self-guided, 7-module internet-delivered cognitive behavioral therapy intervention called Overcome Social Anxiety found that it was highly effective. Objective: The initial evaluation of Overcome Social Anxiety revealed that it led to significant reductions in symptom severity among university undergraduates. The aim of this study was to extend the results of the initial study and investigate their generalizability by directly evaluating the intervention’s effectiveness among a general community sample. Methods: While signing up for Overcome Social Anxiety, users consented to the usage of their anonymized outcome data for research purposes. Before and after completing the intervention, users completed the Fear of Negative Evaluation Scale (FNE), which we employed as the primary outcome measure. Secondary outcome measures included the Depression Anxiety Stress Scales (DASS) and 2 bespoke questionnaires measuring socially anxious thoughts (Thoughts Questionnaire) and avoidance behaviors (Avoidance Questionnaire). Results: Participants who completed the intervention (102/369, 27.7%) experienced significant reductions in the severity of their symptoms on all measures employed, including FNE (P<.001; Cohen d=1.76), the depression subscale of DASS (P<.001; Cohen d=0.70), the anxiety subscale of DASS (P<.001; Cohen d=0.74), the stress subscale of DASS (P<.001; Cohen d=0.80), the Thoughts Questionnaire (P<.001; Cohen d=1.46), and the Avoidance Questionnaire (P<.001; Cohen d=1.42). Conclusions: Our results provide further evidence that Overcome Social Anxiety reduces the severity of social anxiety symptoms among those who complete it and suggest that its effectiveness extends to the general community. The completion rate is the highest documented for a fully automated intervention for anxiety, depression, or low mood in a real community sample. In addition, our results indicate that Overcome Social Anxiety reduces the severity of symptoms of depression, physiological symptoms of anxiety, and stress in addition to symptoms of social anxiety
Nonmethane hydrocarbon measurements in the North Atlantic Flight Corridor during the Subsonic Assessment Ozone and Nitrogen Oxide Experiment
Mixing ratios of nonmethane hydrocarbons (NMHCs) were not enhanced in whole air samples collected within the North Atlantic Flight Corridor (NAFC) during the fall of 1997. The investigation was conducted aboard NASA's DC-8 research aircraft, as part of the Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX). NMHC enhancements were not detected within the general organized tracking system of the NAFC, nor during two tail chases of the DC-8's own exhaust. Because positive evidence of aircraft emissions was demonstrated by enhancements in both nitrogen oxides and condensation nuclei during SONEX, the NMHC results suggest that the commercial air traffic fleet operating in the North Atlantic region does not contribute at all or contributes negligibly to NMHCs in the NAFC. Copyright 2000 by the American Geophysical Union
Self-assembly of Microcapsules via Colloidal Bond Hybridization and Anisotropy
Particles with directional interactions are promising building blocks for new
functional materials and may serve as models for biological structures.
Mutually attractive nanoparticles that are deformable due to flexible surface
groups, for example, may spontaneously order themselves into strings, sheets
and large vesicles. Furthermore, anisotropic colloids with attractive patches
can self-assemble into open lattices and colloidal equivalents of molecules and
micelles. However, model systems that combine mutual attraction, anisotropy,
and deformability have---to the best of our knowledge---not been realized.
Here, we synthesize colloidal particles that combine these three
characteristics and obtain self-assembled microcapsules. We propose that mutual
attraction and deformability induce directional interactions via colloidal bond
hybridization. Our particles contain both mutually attractive and repulsive
surface groups that are flexible. Analogous to the simplest chemical bond,
where two isotropic orbitals hybridize into the molecular orbital of H2, these
flexible groups redistribute upon binding. Via colloidal bond hybridization,
isotropic spheres self-assemble into planar monolayers, while anisotropic
snowman-like particles self-assemble into hollow monolayer microcapsules. A
modest change of the building blocks thus results in a significant leap in the
complexity of the self-assembled structures. In other words, these relatively
simple building blocks self-assemble into dramatically more complex structures
than similar particles that are isotropic or non-deformable
- …