249 research outputs found

    Investigating the functional consequences of expanded triplet repeat sequence in a mouse model of Huntington's Disease (HD)

    Get PDF
    A PCR strategy showed that a number of total mtDNA molecules was significantly decreased (~30%) in the striatum (no reduction in the cortex and cerebellum) of 24-month old HD mice, but not a 15 months of age, when compared to wild-type mice, suggesting mtDNA depletion is a progressive rather than a developmental phenomenon. In light of the ~30% reduction of total mtDNA in the striatum, expression levels of the mitochondrial DNA-encoded respiratory complex enzymes, cytochrome b(Cytb), cytochrome c oxidase I (COI) and cytochrome c oxidase II (COII) were investigated in different brain regions of HD mice. At ~25 months of age, there were no significant differences in mRNA levels of CoII and Cytb in any brain region (striatum, cortex and cerebellum) studied when compared to normal littermates. However, HD mice showed significantly decreased CO-I protein levels and marginally decreased CoI mRNA levels in the striatum. Reduced levels of mtDNA may be caused by decreased replication of mtDNA or increased oxidative damage of mtDNA. Increased levels of 8-OHdG, a marker of increased oxidative stress, were detected in the dorsomedial, dorsolateral and ventromedial striatum, but not in the cortex of 24-month old HD mice providing direct evidence that increased oxidative stress specifically occurs in the striatum of HD mice. As no alterations in the mitochondrial transcription factor (mtTFA) in the striatum of HD mice could be detected, it is likely that mtDNA depletion in the HD mice is caused by increased levels of oxidative stress rather than decreased replication. The results provide a basis for further studies investigating how mutant huntingtin causes increased levels of oxidative stress and for identifying novel therapeutic targets

    Internationalization propensity in family-controlled public firms in emerging markets: The effects of family ownership, governance, and top management team heterogeneity

    Get PDF
    Internationalization propensity is a growing issue faced by family firms. This study contributes to the family business literature by developing a conceptual framework that can identify the family and managerial determinants that affect the extensiveness of internationalization. Drawing on the socioemotional wealth and upper echelon perspectives, it empirically examines the association among family heterogeneity (i.e., family participation is heterogeneous in terms of ownership and governance oversight), top management team (TMT) heterogeneity (i.e., the TMT’s background is heterogeneous in terms of its overseas education and industry experience), and internationalization propensity in publicly traded enterprises. The analysis of data collected from 105 public firms in Taiwan shows that active family participation in ownership and governance oversight and TMT overseas industry experience heterogeneity are significantly and positively associated with internationalization propensity. However, family ownership is found to be significantly but negatively associated with internationalization propensity. We finally discuss the implications of the presented findings for practitioners and organizational theorists

    Ferulic Acid Induces Th1 Responses by Modulating the Function of Dendritic Cells and Ameliorates Th2-Mediated Allergic Airway Inflammation in Mice

    Get PDF
    This study investigated the immunomodulatory effects of ferulic acid (FA) on antigen-presenting dendritic cells (DCs) in vitro and its antiallergic effects against ovalbumin- (OVA-) induced Th2-mediated allergic asthma in mice. The activation of FA-treated bone marrow-derived DCs by lipopolysaccharide (LPS) stimulation induced a high level of interleukin- (IL-) 12 but reduced the expression levels of the proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor- (TNF-) α. Compared to control-treated DCs, FA significantly enhanced the expressions of Notch ligand Delta-like 4 (Dll4), MHC class II, and CD40 molecules by these DCs. Furthermore, these FA-treated DCs enhanced T-cell proliferation and Th1 cell polarization. In animal experiments, oral administration of FA reduced the levels of OVA-specific immunoglobulin E (IgE) and IgG1 and enhanced IgG2a antibody production in serum. It also ameliorated airway hyperresponsiveness and attenuated eosinophilic pulmonary infiltration in dose-dependent manners. In addition, FA treatment inhibited the production of eotaxin, Th2 cytokines (IL-4, IL-5, and IL-13), and proinflammatory cytokines but promoted the Th1 cytokine interferon- (IFN-) γ production in bronchoalveolar lavage fluid (BALF) and the culture supernatant of spleen cells. These findings suggest that FA exhibits an antiallergic effect via restoring Th1/Th2 imbalance by modulating DCs function in an asthmatic mouse model

    Association of TNF-α gene with spontaneous deep intracerebral hemorrhage in the Taiwan population: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic factors may play a role in susceptibility to spontaneous deep intracerebral hemorrhage (SDICH). Previous studies have shown that <it>TNF-α </it>gene variation was associated with risks of subarachnoid hemorrhage in multiple ethnicities. The present case-control study tested the hypothesis that genetic variations of the <it>TNF-α </it>gene may affect the risk of Taiwanese SDICH. We examined the association of SDICH risks with four single nucleotide polymorphisms (SNPs) within the <it>TNF-α </it>gene promoter, namely T-1031C, C-863A, C-857T, and G-308A.</p> <p>Methods</p> <p>Genotyping was determined by PCR-based restriction and electrophoresis assay for 260 SDICH patients and 368 controls. Associations were tested by logistic regression or general linear models with adjusting for multiple covariables in each gender group, and then in combined. Multiplicative terms of gender and each of the four SNPs were applied to detect the interaction effects on SDICH risks. To account for the multiple testing, permutation testing of 1,000 replicates was performed for empirical estimates.</p> <p>Results</p> <p>In an additive model, SDICH risks were positively associated with the minor alleles -1031C and -308A in men (OR = 1.9, 95% CI 1.1 to 3.4, p = 0.03 and OR = 2.6, 95% CI 1.3 to 5.3, p = 0.005, respectively) but inversely associated with -863A in females (OR = 0.5, 95% CI 0.2 to 0.9, p = 0.03). There were significant interaction effects between gender and SNP on SDICH risks regarding SNPs T-1031C, C-863A, and G-308A (p = 0.005, 0.005, and 0.007, respectively). Hemorrhage size was inversely associated with -857T in males (p = 0.04).</p> <p>Conclusions</p> <p>In the Taiwan population, the associations of genetic variations in the <it>TNF-α </it>gene promoter with SDICH risks are gender-dependent.</p

    Spinocerebellar ataxia type 8 larger triplet expansion alters histone modification and induces RNA foci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spinocerebellar ataxia type 8 (SCA8) involves the expression of an expanded CTG/CAG combined repeats (CR) from opposite strands producing CUG expansion transcripts (ataxin 8 opposite strand, ATXN8OS) and a polyglutamine expansion protein (ataxin 8, ATXN8). The pathogenesis of SCA8 is complex and the spectrum of clinical presentations is broad.</p> <p>Results</p> <p>Using stably induced cell models expressing 0, 23, 88 and 157 CR, we study the role of ATXN8OS transcripts in SCA8 pathogenesis. In the absence of doxycycline, the stable ATXN8OS CR cell lines exhibit low levels of ATXN8OS expression and a repeat length-related increase in staurosporine sensitivity and in the number of annexin positive cells. A repeat length-dependent repression of ATXN8OS expression was also notable. Addition of doxycycline leads to 25~50 times more ATXN8OS RNA expression with a repeat length-dependent increase in fold of ATXN8OS RNA induction. ChIP-PCR assay using anti-dimethyl-histone H3-K9 and anti-acetyl-histone H3-K14 antibodies revealed increased H3-K9 dimethylation and reduced H3-K14 acetylation around the ATXN8OS cDNA gene in 157 CR line. The repeat length-dependent increase in induction fold is probably due to the increased RNA stability as demonstrated by monitoring ATXN8OS RNA decay in cells treated with the transcriptional inhibitor, actinomycin D. In cells stably expressing ATXN8OS, RNA FISH experiments further revealed ribonuclear foci formation in cells carrying expanded 88 and 157 CR.</p> <p>Conclusion</p> <p>The present study demonstrates that the expanded CUG-repeat tracts are toxic to human cells and may affect ATXN8OS RNA expression and stability through epigenetic and post-transcriptional mechanisms.</p

    Validation of a Chinese version of disease specific quality of life scale (HFS-36) for hemifacial spasm in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background and object</p> <p>There was no Chinese questionnaire to evaluate the health-related quality of life (HRQoL) in patients with hemifacial spasm (HFS). In this study, we aimed to validate a new disease-specific HRQoL scale for HFS (HFS-36) in Chinese version, and compared it to SF-36, a generic HRQoL scale.</p> <p>Patients and Methods</p> <p>The HFS-36 Chinese version was modified from English version of HFS-30, including subscales of mobility, activities of daily living (ADL), emotional well-being, stigma, social support, cognition, bodily discomfort, and communication. All the items were scored on the 5-point scales, ranging from 0(never) to 4(always). Patients with HFS were asked to answer HFS-36 and SF-36 questionnaires on the same day before and 6-8 weeks after Botulinum toxin (BTX) injections, respectively. The reliability and validity of HFS-36 scale were evaluated statistically.</p> <p>Results</p> <p>Totally, 103 patients (68 females; 35 males) were recruited in this study, with a mean age of 57.6 ± 11.5 years and a mean duration of HFS for 7.6 ± 5.8 years. The intra-class correlation (ICC) and Cronbach's α were over 0.7 in the majority of items. HFS-36 showed a good correlation to HFS severity before BTX treatment and a significant improvement of subscale scoring after BTX treatment. HFS-36 also had a significant correlation to the mental health of SF-36.</p> <p>Conclusions</p> <p>The Chinese version of HFS-36 demonstrated a good reliability and validity in subscales of motility, ADL, emotion well-being, stigma and bodily discomfort. The HRQoL was significantly improved after BTX treatment assessed by HFS-36 or SF-36. Compared to SF-36, HFS-36 scale was more sensitive and specific to evaluate the HRQoL in HFS.</p

    A High-Accuracy Detection System: Based on Transfer Learning for Apical Lesions on Periapical Radiograph

    Get PDF
    Apical Lesions, one of the most common oral diseases, can be effectively detected in daily dental examinations by a periapical radiograph (PA). In the current popular endodontic treatment, most dentists spend a lot of time manually marking the lesion area. In order to reduce the burden on dentists, this paper proposes a convolutional neural network (CNN)-based regional analysis model for spical lesions for periapical radiographs. In this study, the database was provided by dentists with more than three years of practical experience, meeting the criteria for clinical practical application. The contributions of this work are (1) an advanced adaptive threshold preprocessing technique for image segmentation, which can achieve an accuracy rate of more than 96%; (2) a better and more intuitive apical lesions symptom enhancement technique; and (3) a model for apical lesions detection with an accuracy as high as 96.21%. Compared with existing state-of-the-art technology, the proposed model has improved the accuracy by more than 5%. The proposed model has successfully improved the automatic diagnosis of apical lesions. With the help of automation, dentists can focus more on technical and medical diagnoses, such as treatment, tooth cleaning, or medical communication. This proposal has been certified by the Institutional Review Board (IRB) with the certification number 202002030B0

    Fixel-Based Analysis Effectively Identifies White Matter Tract Degeneration in Huntington’s Disease

    Get PDF
    Microstructure damage in white matter might be linked to regional and global atrophy in Huntington’s Disease (HD). We hypothesize that degeneration of subcortical regions, including the basal ganglia, is associated with damage of white matter tracts linking these affected regions. We aim to use fixel-based analysis to identify microstructural changes in the white matter tracts. To further assess the associated gray matter damage, diffusion tensor-derived indices were measured from regions of interest located in the basal ganglia. Diffusion weighted images were acquired from 12 patients with HD and 12 healthy unrelated controls using a 3 Tesla scanner. Reductions in fixel-derived metrics occurs in major white matter tracts, noticeably in corpus callosum, internal capsule, and the corticospinal tract, which were closely co-localized with the regions of increased diffusivity in basal ganglia. These changes in diffusion can be attributed to potential axonal degeneration. Fixel-based analysis is effective in studying white matter tractography and fiber changes in HD

    Deactivation of TBP contributes to SCA17 pathogenesis

    Get PDF
    Spinocerebellar ataxia type 17 (SCA17) is an autosomal dominant cerebellar ataxia caused by the expansion of polyglutamine (polyQ) within the TATA box-binding protein (TBP). Previous studies have shown that polyQexpanded TBP forms neurotoxic aggregates and alters downstream genes. However, how expanded polyQ tracts affect the function of TBP and the link between dysfunctional TBP and SCA17 is not clearly understood. In this study, we generated novel Drosophila models for SCA17 that recapitulate pathological features such as aggregate formation, mobility defects and premature death. In addition to forming neurotoxic aggregates, we determined that polyQ-expanded TBP reduces its own intrinsic DNA-binding and transcription abilities. Dysfunctional TBP also disrupts normal TBP function. Furthermore, heterozygous dTbp amorph mutant flies exhibited SCA17-like phenotypes and flies expressing polyQ-expanded TBP exhibited enhanced retinal degeneration, suggesting that loss of TBP function may contribute to SCA17 pathogenesis. We further determined that the downregulation of TBP activity enhances retinal degeneration in SCA3 and Huntington&apos;s disease fly models, indicating that the deactivation of TBP is likely to play a common role in polyQ-induced neurodegeneration
    • …
    corecore