2,919 research outputs found

    On Path Memory in List Successive Cancellation Decoder of Polar Codes

    Full text link
    Polar code is a breakthrough in coding theory. Using list successive cancellation decoding with large list size L, polar codes can achieve excellent error correction performance. The L partial decoded vectors are stored in the path memory and updated according to the results of list management. In the state-of-the-art designs, the memories are implemented with registers and a large crossbar is used for copying the partial decoded vectors from one block of memory to another during the update. The architectures are quite area-costly when the code length and list size are large. To solve this problem, we propose two optimization schemes for the path memory in this work. First, a folded path memory architecture is presented to reduce the area cost. Second, we show a scheme that the path memory can be totally removed from the architecture. Experimental results show that these schemes effectively reduce the area of path memory.Comment: 5 pages, 6 figures, 2 table

    Low Complexity Belief Propagation Polar Code Decoders

    Full text link
    Since its invention, polar code has received a lot of attention because of its capacity-achieving performance and low encoding and decoding complexity. Successive cancellation decoding (SCD) and belief propagation decoding (BPD) are two of the most popular approaches for decoding polar codes. SCD is able to achieve good error-correcting performance and is less computationally expensive as compared to BPD. However SCDs suffer from long latency and low throughput due to the serial nature of the successive cancellation algorithm. BPD is parallel in nature and hence is more attractive for high throughput applications. However since it is iterative in nature, the required latency and energy dissipation increases linearly with the number of iterations. In this work, we borrow the idea of SCD and propose a novel scheme based on sub-factor-graph freezing to reduce the average number of computations as well as the average number of iterations required by BPD, which directly translates into lower latency and energy dissipation. Simulation results show that the proposed scheme has no performance degradation and achieves significant reduction in computation complexity over the existing methods.Comment: 6 page

    An Implementation of List Successive Cancellation Decoder with Large List Size for Polar Codes

    Full text link
    Polar codes are the first class of forward error correction (FEC) codes with a provably capacity-achieving capability. Using list successive cancellation decoding (LSCD) with a large list size, the error correction performance of polar codes exceeds other well-known FEC codes. However, the hardware complexity of LSCD rapidly increases with the list size, which incurs high usage of the resources on the field programmable gate array (FPGA) and significantly impedes the practical deployment of polar codes. To alleviate the high complexity, in this paper, two low-complexity decoding schemes and the corresponding architectures for LSCD targeting FPGA implementation are proposed. The architecture is implemented in an Altera Stratix V FPGA. Measurement results show that, even with a list size of 32, the architecture is able to decode a codeword of 4096-bit polar code within 150 us, achieving a throughput of 27MbpsComment: 4 pages, 4 figures, 4 tables, Published in 27th International Conference on Field Programmable Logic and Applications (FPL), 201

    Gradient Descent with Random Initialization: Fast Global Convergence for Nonconvex Phase Retrieval

    Full text link
    This paper considers the problem of solving systems of quadratic equations, namely, recovering an object of interest xRn\mathbf{x}^{\natural}\in\mathbb{R}^{n} from mm quadratic equations/samples yi=(aix)2y_{i}=(\mathbf{a}_{i}^{\top}\mathbf{x}^{\natural})^{2}, 1im1\leq i\leq m. This problem, also dubbed as phase retrieval, spans multiple domains including physical sciences and machine learning. We investigate the efficiency of gradient descent (or Wirtinger flow) designed for the nonconvex least squares problem. We prove that under Gaussian designs, gradient descent --- when randomly initialized --- yields an ϵ\epsilon-accurate solution in O(logn+log(1/ϵ))O\big(\log n+\log(1/\epsilon)\big) iterations given nearly minimal samples, thus achieving near-optimal computational and sample complexities at once. This provides the first global convergence guarantee concerning vanilla gradient descent for phase retrieval, without the need of (i) carefully-designed initialization, (ii) sample splitting, or (iii) sophisticated saddle-point escaping schemes. All of these are achieved by exploiting the statistical models in analyzing optimization algorithms, via a leave-one-out approach that enables the decoupling of certain statistical dependency between the gradient descent iterates and the data.Comment: Accepted to Mathematical Programmin

    Female media use behavior and agreement with publicly promoted agenda-specific health messages.

    Get PDF
    This study set out to explore the relationship between female media use behavior and agreement with agenda-specific publicly promoted health messages. A random digit dial telephone cross-sectional survey was conducted using a nationally representative sample of female residents aged 25 and over. Respondents' agreement with health messages was measured by a six-item Health Information Scale (HIS). Data were analyzed using chi-square tests and multiple logistic regression. This survey achieved a response rate of 86% (n = 1074). In this study the longest duration of daily television news watching (OR = 2.32), high self-efficacy (OR = 1.56), and greater attention to medical and health news (OR = 5.41) were all correlates of greater agreement with the selected health messages. Surprisingly, Internet use was not significant in the final model. Many women that public health interventions need to be targeting are not receptive to health information that can be accessed through Internet searches. However, they may be more readily targeted by television campaigns. Agenda-specific public health campaigns aiming to empower women to serve as nodes of information transmission and achieve efficient trickle down through the family unit might do better to invest more heavily in television promotion
    corecore