2,355 research outputs found

    Implications of the Little Higgs Dark Matter and T-odd Fermions

    Get PDF
    We study the phenomenology of dark matter in the Littlest Higgs model with T-parity after the discovery of Higgs boson. We analyze the relic abundance of dark matter, focusing on the effects of coannihilaitons with T-odd fermions. After determining the parameter space that predicts the correct relic abundance measured by WMAP and Planck collaborations, we evaluate the elastic scattering cross section between dark matter and nucleon. In comparison with experimental results, we find that the lower mass of dark matter is constrained mildly by LUX 2013 while the future XENON experiment has potential to explore most of the parameter space for both T-odd lepton and T-odd quark coannihilation scenarios. We also study the collider signatures of T-odd fermion pair production at the LHC. Even though the production cross sections are large, it turns out very challenging to search for these T-odd fermions directly at the collider because the visible charged leptons or jets are very soft. Furthermore, we show that, with an extra hard jet radiated out from the initial state, the T-odd quark pair production can contribute significantly to mono-jet plus missing energy search at the LHC

    Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei

    Get PDF
    Expressing explicitly the parameters of the standard Skyrme interaction in terms of the macroscopic properties of asymmetric nuclear matter, we show in the Skyrme-Hartree-Fock approach that unambiguous correlations exist between observables of finite nuclei and nuclear matter properties. We find that existing data on neutron skin thickness Ξ”rnp\Delta r_{np} of Sn isotopes give an important constraint on the symmetry energy Esym(ρ0)E_{sym}({\rho _{0}}) and its density slope LL at saturation density ρ0{\rho _{0}}. Combining these constraints with those from recent analyses of isospin diffusion and double neutron/proton ratio in heavy-ion collisions at intermediate energies leads to a more stringent limit on LL approximately independent of Esym(ρ0)E_{sym}({\rho _{0}}). The implication of these new constraints on the Ξ”rnp\Delta r_{np} of 208^{208}Pb as well as the core-crust transition density and pressure in neutron stars is discussed.Comment: 18 pages, 9 figures, 1 table. Significantly expanded to include a number of details and discussions. Title shortened. Accepted version to appear in PR

    Contributions of hyperon-hyperon scattering to subthreshold cascade production in heavy ion collisions

    Get PDF
    Using a gauged flavor SU(3)-invariant hadronic Lagrangian, we calculate the cross sections for the strangeness-exchange reactions YY to N\Xi (Y=\Lambda, \Sigma) in the Born approximation. These cross sections are then used in the Relativistic Vlasov-Uehling-Uhlenbeck (RVUU) transport model to study \Xi production in Ar+KCl collisions at incident energy of 1.76A GeV and impact parameter b=3.5 fm. We find that including the contributions of hyperon-hyperon scattering channels strongly enhances the yield of \Xi, leading to the abundance ratio \Xi^{-}/(\Lambda+\Sigma^{0})=3.38E-3, which is essentially consistent with the recently measured value of (5.6Β±1.2βˆ’1.7+1.8)Γ—10βˆ’3(5.6 \pm 1.2_{-1.7}^{+1.8})\times 10^{-3} by the HADES collaboration at GSI.Comment: 8 pages, 5 figure
    • …
    corecore