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Using a gauged flavor SU(3)-invariant hadronic Lagrangian, we calculate the cross sections for
the strangeness-exchange reactions Y Y ↔ NΞ (Y = Λ,Σ) in the Born approximation. These cross
sections are then used in the Relativistic Vlasov-Uehling-Uhlenbeck (RVUU) transport model to
study Ξ production in Ar+KCl collisions at incident energy of 1.76A GeV and impact parameter
b = 3.5 fm. We find that including the contributions of hyperon-hyperon scattering channels strongly
enhances the yield of Ξ, leading to the abundance ratio Ξ−/(Λ + Σ0) = 3.38 × 10−3, which is
essentially consistent with the recently measured value of (5.6 ± 1.2+1.8

−1.7) × 10−3 by the HADES
collaboration at GSI.

PACS numbers: 25.75.-q

I. INTRODUCTION

The study of particle production in heavy ion collisions
at energies below their thresholds in nucleon-nucleon
collisions was a topic of extensive studies during the
1990s [1–5]. The main motivation for such study is that
it offers the possibility of extracting information on the
nuclear equation of state (EOS) at densities above that of
normal nuclear matter. In particular, the yield of strange
hadrons, such as the kaon, has been shown to be sensi-
tive to the stiffness of the nuclear equation of state up to
three times normal nuclear matter density, with a softer
EOS giving a larger yield than a stiff EOS. Indeed, exper-
imental results obtained by the KaoS Collaboration [6]
at the Society for Heavy Ion Research (GSI) in Germany
on the yield of kaons in heavy ion collisions at subthresh-
old energies have led to the conclusion that the nuclear
equation of state at high densities is soft, consistent with
an incompressibility of about 200 MeV extracted from
the collective flow studies by the Plastic Ball [7] and
EOS [8] Collaborations from Lawrence Berkeley Labo-
ratory (LBL) and the E877 [9] and E895 [10] Collabora-
tions at the Alternating Gradient Synchrotron (AGS) of
Brookhaven National Laboratory (BNL). More recently,
the doubly strange baryons Ξ from Ar+KCl collisions
at 1.76A GeV, which is below the threshold energy of
3.74 GeV in a nucleon-nucleon collision, was measured
by the HADES Collaboration at GSI [11]. The mea-
sured abundance ratio including the statistical and sys-
tematic errors is Ξ−/(Λ + Σ0) = (5.6 ± 1.2+1.8

−1.7) × 10−3.
This value is about 10-20 times larger than those given
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by the statistical model [12] and the relativistic trans-
port model [13]. Because of the very low collision en-
ergy, secondary reactions other than the direct reaction
NN → NΞKK are expected to contribute significan-
tantly to Ξ production in these collisions. In Ref. [13],
the strangeness-exchange reaction K̄Y → πΞ (Y = Λ,Σ)
between antikaon and hyperon was introduced in the
Vlasov-Uheling-Uhlenbeck (RVUU) transport model [14]
to study Ξ production in heavy ion collisions. The cross
sections used in Ref. [13] were taken from the coupled-
channel calculation of Ref. [15] based on a gauged fla-
vor SU(3)-invariant hadronic Lagrangian. Since there
are more hyperons than anitkaons in heavy ion colli-
sions at this energy, the strangeness-exchange reaction
Y Y → NΞ between two hyperons is expected to be
important for Ξ production in these collisions. In the
present study, we use the same hadronic Lagarangian
as in Ref. [15] to evaluate the cross sections for the
reaction Y Y → NΞ. For an exploratory study, these
cross sections are calculated in the Born approximation
with the cutoff parameter in the form factors at interac-
tion vertices fitted to the cross sections for the reactions
K̄Y → πΞ obtained in Ref. [15]. For completeness, we
also include the reaction K̄N → KΞ with its cross sec-
tion taken from empirically available values. Our results
show that the inclusion of the reaction Y Y → NΞ sig-
nificantly enhances the yield of Ξ in heavy ion collisions
at subthreshold energies, resulting in the abundance ra-
tio Ξ−/(Λ + Σ0) = 3.38 × 10−3 in Ar+KCl collisions at
1.76A GeV and impact parameter b = 3.5 fm, which is
essentially consistent with the recently measured experi-
mental value. We find, however, that the contribution of
the reaction K̄N → KΞ to the Ξ yield is negligible.

The paper is organized as follows. In Sec. II, we
describe the gauged flavor SU(3)-invariant hadronic La-
grangian [15], calculate the amplitudes for the reaction
Y Y → NΞ in the Born approximation, and parametrize
the resulting cross sections. In Sec. III, we introduce
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the parametrization of the empirical cross section for the
reaction K̄N → KΞ as a function of the center of mass
energy. We then briefly review in Sec. IV the RVUU
transport model for high energy heavy ion collisions. Nu-
merical results on the time evolution of the Ξ abundance
in Ar+KCl collisions at 1.76A GeV and impact parame-
ter b = 3.5 fm are presented in Sec. V. Finally, we present
some discussions in Sect. VI and a summary in Sec. VII.

II. THE HADRONIC MODEL

Possible reactions for Ξ production from hyperon-
hyperon collisions are ΛΛ → NΞ, ΛΣ → NΞ, and
ΣΣ → NΞ. Cross sections for these reactions can be eval-
uated using the same Lagrangian introduced in Ref [15]
for studying Ξ production from the reactions K̄Λ → πΞ
and K̄Σ → πΞ. This Lagrangian is based on the gauged
SU(3) flavor symmetry but with empirical masses. The
coupling constants are taken, if possible, from empirical
information. Otherwise, the SU(3) relations are used to
relate unknown coupling constants to known ones. Also,
form factors are introduced at interaction vertices to take
into account the finite size of hadrons.

A. The Lagrangian

As in Ref. [15], we use the following flavor SU(3)-
invariant hadronic Lagrangian for pseudoscalar mesons
and baryons

L = i Tr(B̄∂/B) + Tr[(∂µP
†∂µP )]

+ g′
{

Tr

[

(2α− 1) B̄γ5γµB∂µP + B̄γ5γµ (∂µP )B
]}

,

(1)

whereB and P denote, respectively, the baryon and pseu-
doscalar meson octets

B =









Σ0

√
2
+ Λ√

6
Σ+ p

Σ− −Σ0

√
2
+ Λ√

6
n

−Ξ− Ξ0 −
√

2
3
Λ









(2)

and

P =
1
√

2







π
0

√
2
+ η8√

6
+ η1√

3
π+ K+

π−
−

π
0

√
2
+ η8√

6
+ η1√

3
K0

K− K̄0
−

√

2

3
η8 + η1√

3







,

(3)

with g′ being a coupling constant and α being a param-
eter.
For the interactions of baryons and pseudoscalar

mesons with the vector meson octet Vµ,

V =
1√
2







ρ0

√
2
+ ω√

2
ρ+ K∗+

ρ− − ρ0

√
2
+ ω√

2
K∗0

K∗− K̄∗0 φ






, (4)

they are included by replacing the partial derivative ∂µ in
Eq.(1) with the covariant derivative Dµ = ∂µ − i

2
g [Vµ, ],

where g is another coupling constant.
We further include the tensor interactions between

baryons and vector mesons via the interaction La-
grangian

Lt =
gt

2m
Tr

[

(2α− 1) B̄σµνB∂µVν + B̄σµν (∂µVν)B
]

,

(5)
with gt being the tensor coupling constant.

B. Born approximation to the reactions ΛΛ → NΞ,
ΛΣ → NΞ, and ΣΣ → NΞ

for high energy heavy ion collisions. Numeric results on the time evolution of the abundance for Ar+KCl collisions
at 1.76A GeV are presented in Section IV. Finally, we give the summary and some discussions in Section V.

II. CROSS SECTIONS FOR THE REACTION Y Y

A. The hadronic Lagrangian

To calculate the cross sections for the reaction Y Y , we use in the present study the following flavor SU(3)-
invariant hadronic Lagrangian for pseudoscalar mesons and baryons

Tr /B) + Tr[( )]

Tr (2 1)
]}

(1)

where the baryon and pseudoscalar meson octets are given, respectively, by

(2)

and

(3)

The interactions of the baryons and pseudoscalar mesons with vector meson octet

∗−

(4)

are included by replacing the partial derivative with the covariant derivative ].
We further include the tensor interactions between baryons and vector mesons via the interaction Lagrangian

Tr (2 1) (5)

with being the tensor coupling constant.

B. Born approximation to the reaction Y Y
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FIG. 1: Born diagrams for the reaction Y Y

FIG. 1: Born diagrams for the reactions ΛΛ → NΞ, ΛΣ →
NΞ, and ΣΣ → NΞ.

In the Born approximation, the reactions ΛΛ → NΞ,
ΛΣ → NΞ, and ΣΣ → NΞ are described by the tree-
level t-channel and u-channel diagrams shown in Fig. 1.
To evaluate their amplitudes requires the following inter-
action Lagrangian densities that are deduced from the
hadronic Lagrangian in the previous subsection, i.e.,

LKNΛ =
fKNΛ

mK
N̄γ5γµΛ∂µK +H.c.,

LKNΣ =
fKNΣ

mK
N̄γ5γµ(~τ · ~Σ)∂µK +H.c.,

LKΛΞ =
fKΛΞ

mK
Ξ̄γ5γµΛ∂µK

c +H.c,

LKΣΞ =
fKΣΞ

mK
Ξ̄γ5γµ(~τ · ~Σ)∂µKc +H.c,

LK∗NΛ = gK∗NΛN̄

(

γµK∗
µ +

κK∗ΛN

mN +mΛ

σµν∂µK
∗
ν

)

Λ

+ H.c,

LK∗NΣ = gK∗NΣ

× ~̄Σ ·
(

γµ~τK∗
µ +

κK∗NΣ

mN +mΣ

σµν~τ∂µK
∗
ν

)

N

+ H.c,

LK∗ΛΞ = gK∗ΛΞΞ̄

(

γµK∗c
µ +

κK∗ΛΞ

mΛ +mΞ

σµν∂µK
∗c
ν

)

Λ

+ H.c,

LK∗ΣΞ = gK∗ΣΞ

× ~̄Σ ·
(

γµ~τK∗c
µ +

κK∗ΣΞ

mΣ +mΞ

σµν~τ∂µK
∗c
ν

)

Ξ
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+ H.c.

(6)

In the above, ~τ are Pauli matrices; ~π, ~ρ, and ~Σ denote
the pion, rho meson, and sigma hyperon isospin triplets,
respectively; K = (K+,K0)T (K∗ = (K∗+,K∗0)T ) and
Kc = (K̄0,−K−)T (K∗c = (K̄∗0,−K∗−)T ) denote the
pseudoscalar (vector) kaon and antikaon isospin doublets,
respectively; and Ξ = (Ξ0,Ξ−)T is the cascade hyperon
isospin doublet. The coupling constants in above interac-
tion Lagrangian densities are relate to those in Sec. II A
by

fKNΛ

mK
=

2α− 3

2
√
3

g′,
fKNΣ

mK
=

2α− 1

2
g′,

fKΛΞ

mK
=

3− 4α

2
√
3

g′,
fKΣΞ

mK
= −1

2
g′,

gK∗NΛ = −gK∗ΛΞ = −
√
3

4
g,

gK∗NΣ = gK∗ΣΞ = −g

4
,

κK∗ΛN =
gtK∗ΛN

gK∗ΛN
, κK∗NΣ =

gtK∗NΣ

gK∗NΣ

,

κK∗ΛΞ =
gtK∗ΛΞ

gK∗ΛΞ

, κK∗ΣΞ =
gtK∗ΣΞ

gK∗ΣΞ

,

gtK∗NΛ

mN +mΛ

=
2α− 3

2
√
3

gt

2m
,

gtK∗NΣ

mN +mΣ

=
2α− 1

2

gt

2m
,

gtK∗ΛΞ

mΛ +mΞ

=
3− 4α

2
√
3

gt

2m
,

gtK∗ΣΞ

mΣ +mΞ

= − gt

4m
.

(7)

The cross sections for these reactions are then given by

σY Y→NΞ(s) =
1

64πsp2i

∫

dt|M|2, (8)

where s = (p1 + p2)
2 and t = (p1 − p3)

2 are the usual
squared center of mass energy of colliding hyperons and
the squared four momentum transfer in the reaction; and
pi is the momentum of initial hyperons in their center of

mass frame. The spin-isospin averaged amplitude |M|2
in the above equation is given by

|M|2 =
1

(2s1 + 1) (2s2 + 1) (2I1 + 1) (2I2 + 1)

×
∑

s1s2s′1s
′

2

[

ηtt|Mt
s1s2s′1s

′

2
|2 − ηtuMt

s1s2s′1s
′

2
Mu∗

s1s2s′1s
′

2

− ηutMu
s1s2s′1s

′

2
Mt∗

s1s2s′1s
′

2
+ ηuu|Mu

s1s2s′1s
′

2
|2
]

, (9)

where M t
s1s2s′1s

′

2

and Mu
s1s2s′1s

′

2

are the spin-dependent

amplitudes for the two Born diagrams shown in Fig. 1
and are given by

Mt
s1s2s′1s

′

2
(s, t) = −fKY1ΞfKNY2

m2
K

F 2(p1 − p3,Λ)

×
[

Ξ̄ (p3) γ
5γµY1 (p1)

] tµtν
t−m2

K

[

N̄ (p4) γ
5γνY2 (p2)

]

+gK∗Y1ΞgK∗NY2

×
[

Ξ̄ (p3)

(

(1 + κK∗Y1Ξ) γ
µ − κK∗Y1Ξ

(p3 + p1)
µ

mY1
+mΞ

)

× Y1 (p1)]
gµν − tµtν/m

2
K∗

t−m2
K∗

[

N̄ (p4) ((1 + κK∗NY2
) γν

+κK∗NY2

(p3 + p1)
ν

mN +mY2

)

Y2 (p2)

]

(10)

and

Mu
s1s2s′1s

′

2
(s, u) = Mt

s1s2s′1s
′

2
(s, t), (11)

with u = (p1 − p4)
2. The form factor F introduced at

the interaction vertex because of the hardron structure
is taken to have the monopole form,

F (q,Λ) =
Λ2

Λ2 + q2
, (12)

and depends on the three momentum transfer q and the
parameter Λ. The isospin factors ηtt, ηtu = ηut, and
ηuu in Eq. (9), which are obtained from summing the
isospins of initial and final particle, are 18, 10, and 18
for the reaction ΣΣ → ΞN ; 6, 2, and 6 for the reaction
ΛΣ → ΞN , and 2, 2, and 2 for the reaction ΛΛ → ΞN .

C. Cross sections for the reactions ΛΛ → NΞ,
ΛΣ → NΞ, and ΣΣ → NΞ

TABLE I: Coupling constants used in the present study.

Vertex f Vertex g gt

KNΛ -3.52 K∗NΛ -5.63 -21.5

KNΣ 0.992 K∗NΣ -3.25 6.31

KΛΞ 0.900 K∗ΛΞ 5.63 6.52

KΣΞ -3.54 K∗ΣΞ -3.25 -26.4

For numerical calculations of the cross sections, we use
the coupling constants shown in Table I. These values are
obtained from g′ = 14.4 GeV−1, g = 13.0, and gt/2m =
19.8/mN that are determined from the empirical values
fπNN = 1.00, gρNN = 3.25, gtρNN = 19.8 [16], and α =

0.64 [17] using relations based on the SU(3) symmetry,
i.e.,

fπNN

mπ
=

g′

2
, gρNN =

g

4
,
gtρNN

2mN
=

gt

4m
. (13)

For the cutoff parameter Λ in the form factor, its value
is taken to be Λ = 0.7 GeV in order to reproduce,
as shown in Fig. 2, the cross sections for the reactions



4

0.0 0.2 0.4
0

5

10

15

20

25

(a) K   

 

 

(m
b)

s1/2-s0
1/2 (GeV)

 Born Appr. with =0.7GeV
 Paramatrized Coupled 

          Channel

0.0 0.2 0.4 0.6

(b) K   

 

 

 

FIG. 2: (Color online) Isospin-averaged cross sections for (a)
K̄Λ → πΞ and (b) K̄Σ → πΞ. Solid lines are from the Born
approximation with the cutoff parameter Λ = 0.7GeV in the
form factor, and dashed lines are those based on the coupled-
channel calculation [13, 15].

K̄Λ → πΞ and K̄Σ → πΞ that are obtained from the
coupled-channel calculation based on the same hadronic
Lagrangian [15].
In Fig. 3, we show by solid lines the isospin-averaged

cross sections for the reactions ΛΛ → NΞ (panel (a)),
ΛΣ → NΞ (panel (b)), and ΣΣ → NΞ (panel (c)) as
functions of the center-of-mass energy

√
s, obtained with

Λ = 0.7 GeV. These cross sections can be parametrized
as

σΛΛ→NΞ = 37.15
pN
pΛ

(
√
s−√

s0)
−0.16 mb,

σΛΣ→NΞ = 25.12(
√
s−√

s0)
−0.42 mb,

σΣΣ→NΞ = 8.51(
√
s−√

s0)
−0.395 mb, (14)

where pΛ and pN are initial Λ and final nucleon momenta
in the center-of-mass frame. We note that the magnitude
of our cross section for the reaction ΞN → ΛΛ is similar
to that of Ref. [18] obtained from the SU6 quark model
formulated in the resonance group method but is smaller
than that extracted from the (K−,K+)Ξ− reactions in a
nucleus [19]. For comparisons, we also show in Fig. 3 the
cross sections for the reaction Y Y → NΞ for the cutoff
parameters Λ = 0.5 GeV (dashed lines) and Λ = 1 GeV
(dotted lines). As expected, the cross sections are larger
for a larger Λ.
The cross sections for the inverse reactions σNΞ→ΛΛ,

σNΞ→ΛΣ, and σNΞ→ΣΣ are related to above cross sections
by the detailed balance relations:

σNΞ→ΛΛ =
1

4

(

pΛ
pN

)2

σΛΛ→NΞ,

σNΞ→ΛΣ =
3

4

(

pΛ
pN

)2

σΛΣ→NΞ,

σNΞ→ΣΣ =
9

4

(

pΣ
pN

)2

σΣΣ→NΞ. (15)
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FIG. 3: (Color online) Cross sections for (a) ΛΛ → NΞ, (b)
ΛΣ → NΞ, (c) ΣΣ → NΞ, (d) NΞ → ΛΛ, (e) NΞ → ΛΣ,
and (f) NΞ → ΣΣ as functions of the center-of-mass energy√
s from the Born approximation with cutoff parameters Λ =

0.5 GeV (dashed lines), Λ = 0.7 GeV (solid lines), and Λ =
1 GeV (dotted lines).

III. CROSS SECTIONS FOR THE REACTION

K̄N → KΞ

For completeness, we also include in the present study
the reaction K̄N → KΞ. Both the differential and total
cross sections for this reaction were measured in 1960s
and 70s [20–29], and they are shown in Fig. 4 by solid
squares forK−+p → K+Ξ− (panel (a)), K−+p → K0Ξ0

(panel (b)), and K− + n → K0Ξ0 (panel (c)). Recently,
a phenomenological model was introduced in Ref. [30] to
describe these reactions, and the results are shown by
dashed lines in Fig. 4. In the present study, we use the
following parametrization for these cross sections:

σK−p→K+Ξ− = 235.6

(

1−
√
s0√
s

)2.4 (√
s0√
s

)16.6

mb,

σK−p→K0Ξ0 = 7739.9

(

1−
√
s0√
s

)3.8 (√
s0√
s

)26.5

mb,

σK−n→K0Ξ− = 235.6

(

1−
√
s0√
s

)2.4 (√
s0√
s

)16.6

mb.

(16)
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FIG. 4: (Color online) Cross sections for the reaction K− +
p → K+Ξ− (upper left window), K−+p → K0Ξ0 (upper right
window), and K− + n → K0Ξ0 (lower left window). Solid
squares are experimental data, dashed lines are theoretical
results of Ref. [30], and solid lines are our parametrization.
Lower right window shows the isospin averaged cross sections
for the reaction K̄N → KΞ (solid line) and its inverse reaction
KΞ → K̄N (dashed line) based on our parametrization.

In terms of these cross sections, the isospin averaged cross
section for the reaction K̄N → KΞ can be expressed as

σK̄N→KΞ = 0.5(σK−p→K+Ξ− + σK−p→K0Ξ0

+ σK−n→K0Ξ−). (17)

The detailed balance relation then allows us to express
the cross section for the inverse reaction KΞ → K̄N as

σKΞ→K̄N =

(

pN
pΞ

)2

σK̄N→KΞ (18)

where pN and pΞ are the 3-momenta of nucleon and Ξ in
the center-of-mass frame.

IV. THE RELATIVISTIC

VLASOV-UHLING-ULENBECK TRANSPORT

MODEL

To study Ξ production in heavy ion collisions at sub-
threshold energies, we generalize the RVUU transport
model [14] to include the reactions Y Y → NΞ and
K̄N → KΞ and their inverse reactions besides the re-
action K̄Y → πΞ and its inverse reaction that were al-
ready included in Ref. [13]. In addition to these reactions
and other reactions involving nucleons, Delta resonances,
hyperons, pions, kaons, and antikaons, the VUU model
also includes the mean-field effect on the propagation of
baryons, kaons, and antikaons. For nucleons and Delta
resonances, their mean-field potentials are taken from the
relativistic mean-field model via the scalar and vector

potentials, so their motions are given by the following
equations of motion:

ẋ =
p∗

E∗

ṗ = −∇x(E
∗ +W0) (19)

where m∗ = m − Φ, p∗ = p − W, E∗ =
√

p∗2 +m∗2

with Φ and W = (W0,W) being the scalar and vector
mean fields, respectively. These mean fields are calcu-
lated from the effective chiral Lagrangian of Ref. [31] with
parameters determined from fitting the nuclear matter
incompressibility K0 = 194MeV and the nucleon effec-
tive mass m∗/m = 0.6 at normal nuclear matter density
ρ0 = 0.15 fm3. For Λ and Σ hyperons, their mean-field
potentials are taken to be 2/3 of the nucleon mean-field
potential according to their light quark content. Simi-
larly, the mean-field potential for Ξ is 1/3 of that of the
nucleon .
For kaons and antikaons, their mean-field potentials

are derived, on the other hand, from the dispersion rela-
tion obtained in the chiral Lagrangian [32]

ωK,K̄ =

[

m2
K,K̄ + p2 − ΣNK

f2
ρs +

(

3

8

ρN
f2

)2
]1/2

± 3

8

ρN
f2

,

(20)
where ρs = 〈N̄N〉 is the scalar density, f = 103 MeV is
the pion decay constant, and the ± is taken as “+” for
kaons and “-” for antikaons. The KN and K̄N sigma
term ΣNK in the above equation can in principle be cal-
culated from the SU(3)L×SU(3)R chiral Lagrangian but
are taken to have the values ΣNK/f2 = 0.22 GeV2fm3

and ΣNK̄/f2 = 0.35 GeV2fm3 as in Ref.[13] from fitting
the kaon and antikaon yields in heavy ion collisions.
Besides affecting the propagation of particles, the

mean-field potential also has effect on the threshold en-
ergy for particle production as a result of the potential
difference between the initial and final states of a reac-
tion. For example, this effect is important for under-
standing the enhanced production of antikaon through
the reactions BB ↔ BBKK̄, πB ↔ KK̄B, and πY ↔
K̄N in heavy ion collisions at subthresold energies. As a
result, the contribution of the reaction K̄Y → πΞ to Ξ
production in heavy ion collisions at subthreshold ener-
gies was found in Ref. [13] to be further enhanced. We
note that in the RVUUmodel, kaons, antikaons, hyperons
(lambdas and sigmas), and cascade particles are treated
perturbatively by neglecting the effect of their produc-
tion and annihilation on the collision dynamics, which
is dominated by the more abundant nucleons, Delta res-
onances, and pions. In this approach, kaons, antikaons,
and hyperson are produced from nucleon (Delta)-nucleon
(Delta) and pion-nucleon (Delta) collisions whenever it
is energetically allowed, and they are given probabili-
ties that are determined by the ratios of their respective
production cross sections to the total cross sections of
the colliding particles. For Ξ production from antikaon
collisions with nucleons or hyperons and from hyperon-
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hyperon collisions, it is similarly treated but the proba-
bility of the produced Ξ is reduced by the probabilities
of colliding particles. The annihilation of these rare par-
ticles is treated in a similar way and leads to reductions
of their probabilities. The present approach thus takes
into account the small probability associated with the
production of two rare particles in a subthrehold heavy
ion collision that are involved in the production of a Ξ.

V. RESULTS
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FIG. 5: (Color online) Time evolutions of (a) central baryon
density (right scale) and the abundances (left scales) of π,
∆; (b) K, Λ, Σ, and K̄; and (c) Ξ produced from different
reactions.

In this Section, we show the results for 40Ar + KCl
collisions at incident energy 1.76 AGeV, taking as an av-
erage of 40Ar + K39 collisions and 40Ar + Cl35 collisions,
and compare them with the data from the HADES Col-
laboration at SIS. The HADES trigger (LVL1) selects
approximately the most central 35% of the total reaction
cross section [11]. According to GEANT simulations [33]
with the UrQMD [34, 35] transport approach as event
generator, the average value and width of the correspond-
ing impact parameter distribution amount to 3.5 and 1.5
fm, respectively. For simplicity, we take b = 3.5 fm in the
present study. Fig. 5(a) shows the time evolution of π and
∆ abundances (left scale) and the central baryon density

(right scale). It is seen that the colliding system reaches
its highest density of about 1.87ρ0 at about 7 fm/c when
most particles are produced. The π abundance saturates
at 10.3. Assuming isospin symmetry, the π− number is
then 3.43 which is very close to the measured number
of 3.9± 0.1± 0.1 by the HADES Collaboration [36, 37].
The time evolution for the abundances ofK, K̄, Λ, and Σ
are shown in Fig. 5(b), and they saturate at the values of
5.32×10−2, 1.15×10−3, 2.60×10−2, and 2.60×10−2, re-
spectively. Assuming isospin symmetry gives 2.61×10−2

for the K+ number, 5.75 × 10−4 for the K− number,
and 3.47 × 10−2 for the Λ + Σ0 number. These num-
bers are again close to corresponding measured numbers
of (2.8±0.2±0.1±0.1)×10−2, (7.1±1.5±0.3±0.1)×10−4,
and (4.09 ± 0.1 ± 0.17) × 10−2 by the HADES Collabo-
ration [38]. For the time evolution of the Ξ abundance,
it is shown by the solid curve in Fig.5(c) and is seen to
saturate at the value 2.34×10−4. Taking Ξ− as half of Ξ
by assuming isospin symmetry, we obtained a Ξ− num-
ber of 1.17 × 10−4 which is about half of the measured
number of (2.3± 0.9)× 10−4 by the HADES Collabora-
tion [39]. Our results thus lead to an abundance ratio
Ξ−/(Λ + Σ0) = 3.38 × 10−3, which is essentially consis-
tent with the measured value of (5.6± 1.2+1.8

−1.7)× 10−3 by
the HADES collaboration.
The contributions to Ξ production from different reac-

tion channels are also shown in Fig.5(c). Dotted, dashed-
dotted, and dash lines denote, respectively, the abun-
dance of the Ξ particles from the reactions Y Y → NΞ,
K̄Y → πΞ, and K̄N → KΞ. Compared to the total Ξ
abundance, shown by the solid line in Fig.5, the contri-
butions are 97.5%, 2.40%, and 0.1% from the reactions
Y Y → NΞ, K̄Y → πΞ, and K̄N → KΞ, respectively. So
the Y Y → NΞ channel dominates Ξ production in heavy
ion collisions at subthreshold energies. This can be ex-
plained by the fact that the cross section for Y Y → NΞ
is almost 3-4 times the cross section for K̄Y → πΞ, and
almost hundred times the cross section for K̄N → KΞ.
Also, the hyperon abundance in the system is almost
20 times the anti-kaon abundance. We note that the
relative contributions to the Ξ yield from the reactions
ΛΛ → NΞ, ΛΣ → NΞ and ΣΣ → NΞ are about 1, 4 and
1.

VI. DISCUSSIONS

Our results are obtained without the consideration of
the isospin asymmetry effect due to different proton and
neutron numbers in the colliding nuclei, which is ex-
pected to increase the final abundance ratio Ξ−/(Λ+Σ0).
If we assume that the abundance of Ξ has reached chem-
ical equilibrium in heavy ion collisions, which is certainly
questionable in view of the failure of the statistical model
in describing the experimental data, this enhancement
can be estimated using Ξ−/Ξ0 = e−µC/T = Σ−/Σ0 =
Σ0/Σ+ = N/Z, where µC is the charge chemical poten-
tial and T is the temperature of the system. With the
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value N/Z ∼ 1.14 for Ar40 +K39 or Ar40+Cl35, we have
Ξ− = 0.533 Ξ and Σ0 = 0.3314 Σ, leading to the ratio
Ξ−/(Λ+Σ0) = 3.60× 10−3 that is 6.5% larger than that
for an isospin symmetric system.
Also, the nuclear EOS used in the transport model can

affect the final Ξ abundance in heavy ion collisions. The
results presented in the previous Section are based on a
soft EOS. Using a stiff EOS, we find that the Λ, Σ, and Ξ
abundances are reduced to 1.74× 10−2, 1.77× 10−2, and
1.46 × 10−4, respectively. The reason for this reduction
in the hyperon abundances is that the energy density
of the colliding system increases faster for a stiff EOS,
thus making its expansion faster and reaction time short.
However, the abundance ratio Ξ−/(Λ+Σ0) = 3.13×10−3

for the stiff EOS is essentially the same as that for a soft
EOS.
Furthermore, the results presented here are for the im-

pact parameter b = 3.5 fm. A more realistic comparison
with experimental data should include a distribution of
impact parameters. We have checked that using differ-
ent impact parameters, the ratio Ξ−/(Λ + Σ0) remains,
however, essentially unchanged, since both hyperons and
cascade abundances change by almost the same factor.
Finally, because of the very large Ξ production cross

sections and the small size of the colliding system, the
geometrical treatment of Ξ production from hyperon-
hyperon scattering in terms of their scattering cross sec-
tion as used in the RVUU transport model may become
inaccurate. This can be seen from the dependence of fi-
nal Ξ abundance on the value of the cutoff parameter Λ
in the form factor used in evaluating the cross sections
of the reactions Y Y → NΞ. As shown in Fig. 3, these
cross sections increase with increasing value of Λ. Re-
sults from our transport model study show, on the other
hand, that the Ξ abundance increases with decreasing
value of Λ. However, our conclusion in the present work
is expected to remain unchanged since the Ξ abundance
changes only by about 30% when the Ξ production cross
sections change by more than a factor of 4. We note that
a more accurate treatment of particle scattering may be
achieved by using the stochastic method of Ref. [40] based
on the transition probability, and we hope to purse such

an improved study in the future.

VII. SUMMARY

We have calculated the cross sections for the reac-
tion Y Y → NΞ (Y = Λ, Σ) based on a gauged SU(3)-
invariant hadronic Lagrangian in the Born approximation
and found that these cross sections are almost 4 times the
cross sections for the reaction K̄Y → πΞ that was con-
sidered in previous studies. We then used these cross sec-
tions to study Ξ production in 40Ar+KCl collisions at the
subthreshold energy of 1.76 AGeV within the frame work
of a relativistic transport model that includes explicitly
the nucleon, ∆, pion, and perturbatively the kaon, an-
tikaon, hyperons and Ξ. We found that the reaction
Y Y → NΞ would enhance the Ξ abundance by a factor of
about 16 compared to that from the reaction K̄Y → πΞ,
resulting in abundance ratio Ξ−/(Λ+Σ0) = 3.38× 10−3

that is essentially consistent with that measured by the
HADES Collaboration at GSI. Our study has thus helped
in resolving one of the puzzles in particle production from
heavy ion collisions at subthrehold energies.
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