7,594 research outputs found

    Relativistic Theory of Infinite Statistics Fields

    Full text link
    Infinite statistics in which all representations of the symmetric group can occur is known as a special case of quon theory. However, the validity of relativistic quon theories is still in doubt. In this paper we prove that there exists a relativistic quantum field theory which allows interactions involving infinite statistics particles. We also give some consistency analysis of this theory such as conservation of statistics and Feynman rules.Comment: 7 pages, 3 figure

    The influence of Aharonov-Casher effect on the generalized Dirac oscillator in the cosmic string space-time

    Full text link
    In this manuscript we investigate the generalized Dirac oscillator in the simplest topological defect described by the cosmic string space-time under the effect of the external electromagnetic fields. The radial wave equation and energy eigenvalue of the Dirac oscillator considered as the Cornell potential function are derived via the Nikifornov-Uvarov method, we start with the initial analysis of the Aharonov-Casher frequency and phase, deficit angle, and potential parameters on energy spectrum. We also give two specific cases that Dirac oscillator with the Coulomb and Linear potential in this system. Note that the Coulomb strength N1 has non-negligible effect on the studied system

    No-reference Point Cloud Geometry Quality Assessment Based on Pairwise Rank Learning

    Full text link
    Objective geometry quality assessment of point clouds is essential to evaluate the performance of a wide range of point cloud-based solutions, such as denoising, simplification, reconstruction, and watermarking. Existing point cloud quality assessment (PCQA) methods dedicate to assigning absolute quality scores to distorted point clouds. Their performance is strongly reliant on the quality and quantity of subjective ground-truth scores for training, which are challenging to gather and have been shown to be imprecise, biased, and inconsistent. Furthermore, the majority of existing objective geometry quality assessment approaches are carried out by full-reference traditional metrics. So far, point-based no-reference geometry-only quality assessment techniques have not yet been investigated. This paper presents PRL-GQA, the first pairwise learning framework for no-reference geometry-only quality assessment of point clouds, to the best of our knowledge. The proposed PRL-GQA framework employs a siamese deep architecture, which takes as input a pair of point clouds and outputs their rank order. Each siamese architecture branch is a geometry quality assessment network (GQANet), which is designed to extract multi-scale quality-aware geometric features and output a quality index for the input point cloud. Then, based on the predicted quality indexes, a pairwise rank learning module is introduced to rank the relative quality of a pair of degraded point clouds.Extensive experiments demonstrate the effectiveness of the proposed PRL-GQA framework. Furthermore, the results also show that the fine-tuned no-reference GQANet performs competitively when compared to existing full-reference geometry quality assessment metrics

    Analysis on vibrations and infrared absorption of uncooled microbolometer

    Get PDF
    The characteristics of vibrations in microbolometer had significant impact on the performances of its infrared absorption. Due to the complex architectures, leading to the unfavorable connection between the analysis of infrared absorption and vibrations. To solve this issue, a finite element analysis (FEA) method was designed to make better compatible with infrared absorption and vibrations, as well as the resonant frequency analysis was completed. A vanadium oxide (VO2) based microbolometer was designed, and the corresponding three-dimensional (3D) modeling was also built. By vibrations and resonant frequency FEA, mechanics and frequency characteristic were studied. 200 G, 500 G and 1000 G acceleration vibrations were loaded on the 3D model at Z axis, which perpendicular to the bridge-like structure. It shows that under 500 G acceleration vibration, the deformation of the model was small enough to ensure the resonant cavity maintained λ/4 which means a high IR absorption for the microbolometer. The first order modal frequency, the second order modal frequency and the third order modal frequency of the 3D model were also analyzed. Purpose of resonant frequency analyzing of microbolometer was to avoid devices work on this frequency result of failure. Finally, an uncooled infrared focal plane was fabricated, and the experimental data matched the simulation fitting results. Perfect performance in mechanical properties, IR absorption and imaging effect of experimental device indicating a shorter design cycle and low cost potential. The fast, efficient FEA design method enables simulating infrared absorption and vibrations together

    Living Donor Liver Transplantation for Hepatocellular Carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is a major worldwide health problem, which is expected to increase steadily due to different underlying liver diseases. Surgical treatment modalities including liver transplantation (LT) or liver resection (LR) are the mainstay options for early cases of HCC. Liver transplantation for well‐selected cases provides excellent survival outcomes comparable to nonmalignant indications of LT. Living donor liver transplantation (LDLT) is an alternative option or even the sole one in the current era of organ shortage problem and in some Asian countries where deceased organ donation is markedly reduced due to various reasons. The adoption of LDLT for HCC treatment elicited many dynamic changes and debates to the dilemma of LT as a whole. In this chapter, we focus on different perspectives of LDLT for HCC, including selection criteria evolution, controversial topics, ethical considerations, operative highlights, and other points
    corecore