17 research outputs found

    GDNF Schwann cells in hydrogel scaffolds promote regional axon regeneration, remyelination and functional improvement after spinal cord transection in rats

    Get PDF
    Positively-charged oligo[poly(ethylene glycol)fumarate] (OPF+) is a biodegradable hydrogel used for spinal cord injury repair. We compared scaffolds containing primary Schwann cells (SCs) to scaffolds delivering SCs genetically modified to secrete high concentrations of glial cell-derived neurotrophic factor (GDNF). Multichannel OPF+ scaffolds loaded with SCs or GDNF-SCs were implanted into transected rat spinal cords for 4 weeks. GDNF-SCs promoted regeneration of more axons into OPF+ scaffolds (2773.0 +/- 396.0) than primary SC OPF+ scaffolds (1666.0 +/- 352.2) (p = 0.0491). This increase was most significant in central and ventral-midline channels of the scaffold. Axonal remyelination was quantitated by stereologic analysis. Increased myelination of regenerating axons was observed in the GDNF-SC group. Myelinating cell and axon complexes were formed by host SCs and not by implanted cells or host oligodendrocytes. Fast Blue retrograde tracing studies determined the rostral-caudal directionality of axonal growth. The number of neurons that projected axons rostrally through the GDNF-SC scaffolds was higher (7929 +/- 1670) than in animals with SC OPF+ scaffolds (1069 +/- 241.5) (pThis work was supported by the National Institutes of Health (EB002390) (A. J. W.), the Wilson, Morton and Mayo Foundations (A. J. W.) and the Health Research Board of Ireland (RP/2007/143) (N. M. and S. S. M.). We thank Thomas Ritter, National University of Ireland, Galway, for supplying source plasmids, James Tarara at Mayo Clinic for expertise in confocal microscopy, and Andrew Knight and Trent Chiang for the GDNF ELISA studies. We thank Ann Schmeichel and Shuya Zhang for expertise in immunohistochemistry, Jarred Nesbitt for expert animal care and Jane Meyer for her role in manuscript preparation.peer-reviewe

    GDNF Schwann cells in hydrogel scaffolds promote regional axon regeneration, remyelination and functional improvement after spinal cord transection in rats

    No full text
    Positively-charged oligo[poly(ethylene glycol)fumarate] (OPF+) is a biodegradable hydrogel used for spinal cord injury repair. We compared scaffolds containing primary Schwann cells (SCs) to scaffolds delivering SCs genetically modified to secrete high concentrations of glial cell-derived neurotrophic factor (GDNF). Multichannel OPF+ scaffolds loaded with SCs or GDNF-SCs were implanted into transected rat spinal cords for 4 weeks. GDNF-SCs promoted regeneration of more axons into OPF+ scaffolds (2773.0 +/- 396.0) than primary SC OPF+ scaffolds (1666.0 +/- 352.2) (p = 0.0491). This increase was most significant in central and ventral-midline channels of the scaffold. Axonal remyelination was quantitated by stereologic analysis. Increased myelination of regenerating axons was observed in the GDNF-SC group. Myelinating cell and axon complexes were formed by host SCs and not by implanted cells or host oligodendrocytes. Fast Blue retrograde tracing studies determined the rostral-caudal directionality of axonal growth. The number of neurons that projected axons rostrally through the GDNF-SC scaffolds was higher (7929 +/- 1670) than in animals with SC OPF+ scaffolds (1069 +/- 241.5) (pThis work was supported by the National Institutes of Health (EB002390) (A. J. W.), the Wilson, Morton and Mayo Foundations (A. J. W.) and the Health Research Board of Ireland (RP/2007/143) (N. M. and S. S. M.). We thank Thomas Ritter, National University of Ireland, Galway, for supplying source plasmids, James Tarara at Mayo Clinic for expertise in confocal microscopy, and Andrew Knight and Trent Chiang for the GDNF ELISA studies. We thank Ann Schmeichel and Shuya Zhang for expertise in immunohistochemistry, Jarred Nesbitt for expert animal care and Jane Meyer for her role in manuscript preparation.peer-reviewe

    GDNF Schwann cells in hydrogel scaffolds promote regional axon regeneration, remyelination and functional improvement after spinal cord transection in rats

    No full text
    Positively-charged oligo[poly(ethylene glycol)fumarate] (OPF+) is a biodegradable hydrogel used for spinal cord injury repair. We compared scaffolds containing primary Schwann cells (SCs) to scaffolds delivering SCs genetically modified to secrete high concentrations of glial cell-derived neurotrophic factor (GDNF). Multichannel OPF+ scaffolds loaded with SCs or GDNF-SCs were implanted into transected rat spinal cords for 4 weeks. GDNF-SCs promoted regeneration of more axons into OPF+ scaffolds (2773.0 +/- 396.0) than primary SC OPF+ scaffolds (1666.0 +/- 352.2) (p = 0.0491). This increase was most significant in central and ventral-midline channels of the scaffold. Axonal remyelination was quantitated by stereologic analysis. Increased myelination of regenerating axons was observed in the GDNF-SC group. Myelinating cell and axon complexes were formed by host SCs and not by implanted cells or host oligodendrocytes. Fast Blue retrograde tracing studies determined the rostral-caudal directionality of axonal growth. The number of neurons that projected axons rostrally through the GDNF-SC scaffolds was higher (7929 +/- 1670) than in animals with SC OPF+ scaffolds (1069 +/- 241.5) (pThis work was supported by the National Institutes of Health (EB002390) (A. J. W.), the Wilson, Morton and Mayo Foundations (A. J. W.) and the Health Research Board of Ireland (RP/2007/143) (N. M. and S. S. M.). We thank Thomas Ritter, National University of Ireland, Galway, for supplying source plasmids, James Tarara at Mayo Clinic for expertise in confocal microscopy, and Andrew Knight and Trent Chiang for the GDNF ELISA studies. We thank Ann Schmeichel and Shuya Zhang for expertise in immunohistochemistry, Jarred Nesbitt for expert animal care and Jane Meyer for her role in manuscript preparation

    Comparison of cellular architecture, axonal growth, and blood vessel formation through cell-loaded polymer scaffolds in the transected rat spinal cord

    No full text
    The use of multichannel polymer scaffolds in a complete spinal cord transection injury serves as a deconstructed model that allows for control of individual variables and direct observation of their effects on regeneration. In this study, scaffolds fabricated from positively charged oligo[poly(ethylene glycol)fumarate] (OPF(+)) hydrogel were implanted into rat spinal cords following T9 complete transection. OPF(+) scaffold channels were loaded with either syngeneic Schwann cells or mesenchymal stem cells derived from enhanced green fluorescent protein transgenic rats (eGFP-MSCs). Control scaffolds contained extracellular matrix only. The capacity of each scaffold type to influence the architecture of regenerated tissue after 4 weeks was examined by detailed immunohistochemistry and stereology. Astrocytosis was observed in a circumferential peripheral channel compartment. A structurally separate channel core contained scattered astrocytes, eGFP-MSCs, blood vessels, and regenerating axons. Cells double-staining with glial fibrillary acid protein (GFAP) and S-100 antibodies populated each scaffold type, demonstrating migration of an immature cell phenotype into the scaffold from the animal. eGFP-MSCs were distributed in close association with blood vessels. Axon regeneration was augmented by Schwann cell implantation, while eGFP-MSCs did not support axon growth. Methods of unbiased stereology provided physiologic estimates of blood vessel volume, length and surface area, mean vessel diameter, and cross-sectional area in each scaffold type. Schwann cell scaffolds had high numbers of small, densely packed vessels within the channels. eGFP-MSC scaffolds contained fewer, larger vessels. There was a positive linear correlation between axon counts and vessel length density, surface density, and volume fraction. Increased axon number also correlated with decreasing vessel diameter, implicating the importance of blood flow rate. Radial diffusion distances in vessels significantly correlated to axon number as a hyperbolic function, showing a need to engineer high numbers of small vessels in parallel to improving axonal densities. In conclusion, Schwann cells and eGFP-MSCs influenced the regenerating microenvironment with lasting effect on axonal and blood vessel growth. OPF(+) scaffolds in a complete transection model allowed for a detailed comparative, histologic analysis of the cellular architecture in response to each cell type and provided insight into physiologic characteristics that may support axon regeneration

    Comparison of cellular architecture, axonal growth, and blood vessel formation through cell-loaded polymer scaffolds in the transected rat spinal cord

    No full text
    The use of multichannel polymer scaffolds in a complete spinal cord transection injury serves as a deconstructed model that allows for control of individual variables and direct observation of their effects on regeneration. In this study, scaffolds fabricated from positively charged oligo[poly(ethylene glycol)fumarate] (OPF+) hydrogel were implanted into rat spinal cords following T9 complete transection. OPF+ scaffold channels were loaded with either syngeneic Schwann cells or mesenchymal stem cells derived from enhanced green fluorescent protein transgenic rats (eGFP-MSCs). Control scaffolds contained extracellular matrix only. The capacity of each scaffold type to influence the architecture of regenerated tissue after 4 weeks was examined by detailed immunohistochemistry and stereology. Astrocytosis was observed in a circumferential peripheral channel compartment. A structurally separate channel core contained scattered astrocytes, eGFP-MSCs, blood vessels, and regenerating axons. Cells double-staining with glial fibrillary acid protein (GFAP) and S-100 antibodies populated each scaffold type, demonstrating migration of an immature cell phenotype into the scaffold from the animal. eGFP-MSCs were distributed in close association with blood vessels. Axon regeneration was augmented by Schwann cell implantation, while eGFP-MSCs did not support axon growth. Methods of unbiased stereology provided physiologic estimates of blood vessel volume, length and surface area, mean vessel diameter, and cross-sectional area in each scaffold type. Schwann cell scaffolds had high numbers of small, densely packed vessels within the channels. eGFP-MSC scaffolds contained fewer, larger vessels. There was a positive linear correlation between axon counts and vessel length density, surface density, and volume fraction. Increased axon number also correlated with decreasing vessel diameter, implicating the importance of blood flow rate. Radial diffusion distances in vessels significantly correlated to axon number as a hyperbolic function, showing a need to engineer high numbers of small vessels in parallel to improving axonal densities. In conclusion, Schwann cells and eGFP-MSCs influenced the regenerating microenvironment with lasting effect on axonal and blood vessel growth. OPF+ scaffolds in a complete transection model allowed for a detailed comparative, histologic analysis of the cellular architecture in response to each cell type and provided insight into physiologic characteristics that may support axon regeneration

    Open-Spaced Ridged Hydrogel Scaffolds Containing TiO<sub>2</sub>-Self-Assembled Monolayer of Phosphonates Promote Regeneration and Recovery Following Spinal Cord Injury

    No full text
    The spinal cord has a poor ability to regenerate after an injury, which may be due to cell loss, cyst formation, inflammation, and scarring. A promising approach to treating a spinal cord injury (SCI) is the use of biomaterials. We have developed a novel hydrogel scaffold fabricated from oligo(poly(ethylene glycol) fumarate) (OPF) as a 0.08 mm thick sheet containing polymer ridges and a cell-attractive surface on the other side. When the cells are cultured on OPF via chemical patterning, the cells attach, align, and deposit ECM along the direction of the pattern. Animals implanted with the rolled scaffold sheets had greater hindlimb recovery compared to that of the multichannel scaffold control, which is likely due to the greater number of axons growing across it. The immune cell number (microglia or hemopoietic cells: 50–120 cells/mm2 in all conditions), scarring (5–10% in all conditions), and ECM deposits (Laminin or Fibronectin: approximately 10–20% in all conditions) were equal in all conditions. Overall, the results suggest that the scaffold sheets promote axon outgrowth that can be guided across the scaffold, thereby promoting hindlimb recovery. This study provides a hydrogel scaffold construct that can be used in vitro for cell characterization or in vivo for future neuroprosthetics, devices, or cell and ECM delivery

    Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures

    No full text
    The growth and proliferation of lithium (Li) dendrites during cell recharge are currently unavoidable, which seriously hinders the development and application of rechargeable Li metal batteries. Solid electrolytes with robust mechanical modulus are regarded as a promising approach to overcome the dendrite problems. However, their room-temperature ionic conductivities are usually too low to reach the level required for normal battery operation. Here, a class of novel solid electrolytes with liquid-like room-temperature ionic conductivities (>1 mS cm<sup>–1</sup>) has been successfully synthesized by taking advantage of the unique nanoarchitectures of hollow silica (HS) spheres to confine liquid electrolytes in hollow space to afford high conductivities (2.5 mS cm<sup>–1</sup>). In a symmetric lithium/lithium cell, the solid-like electrolytes demonstrate a robust performance against the Li dendrite problem, preventing the cell from short circuiting at current densities ranging from 0.16 to 0.32 mA cm<sup>–2</sup> over an extended period of time. Moreover, the high flexibility and compatibility of HS nanoarchitectures, in principle, enables broad tunability to choose desired liquids for the fabrication of other kinds of solid-like electrolytes, such as those containing Na<sup>+</sup>, Mg<sup>2+</sup>, or Al<sup>3+</sup> as conductive media, providing a useful alternative strategy for the development of next generation rechargeable batteries
    corecore