11 research outputs found

    HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: : an intercomparison study

    Get PDF
    This is an Open Access article distributed under the Creative Commons Attribution 3.0 License, https://creativecommons.org/licenses/by/3.0/. © Author(s) 2017. Published by Copernicus Publications on behalf of the European Geosciences Union.We present a detailed evaluation of remotely-sensed aerosol microphysical properties obtained from an advanced, multi-wavelength High Spectral Resolution Lidar (HSRL-2) during the 2013 NASA DISCOVER-AQ field campaign. Vertically resolved retrievals of fine mode aerosol number, surface area, and volume concentration as well as aerosol effective radius are compared to 108 co-located, airborne in situ measurement profiles in the wintertime San Joaquin Valley, California, and in summertime Houston, Texas. An algorithm for relating the dry in situ aerosol properties to those obtained by the HSRL at ambient relative humidity is discussed. We show that the HSRL-2 retrievals of ambient fine mode aerosol surface area and volume concentrations agree with the in situ measurements to within 25% and 10%, respectively, once hygroscopic growth adjustments have been applied to the dry in situ data. Despite this excellent agreement for the microphysical properties, extinction and backscatter coefficients at ambient relative humidity derived from the in situ aerosol measurements using Mie theory are consistently smaller than those measured by the HSRL, with average differences of 31% 5% and 53% 11% for California and Texas, respectively. This low bias in the in situ estimates is attributed to the presence of coarse mode aerosol that are detected by HSRL-2 but that are too large to be well sampled by the in situ instrumentation. Since the retrieval of aerosol volume is most relevant to current regulatory efforts targeting fine particle mass (PM2:5), these findings highlight the advantages of an advanced 3+2 HSRL for constraining the vertical distribution of the aerosol volume or mass loading relevant for air quality.Peer reviewedFinal Published versio

    Airborne multiwavelength High Spectral Resolution Lidar (HSRL-2) observations during TCAP 2012 : Vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US

    Get PDF
    © Author(s) 2014. This work is distributed under the Creative Commons Attribution 3.0 License.We present measurements acquired by the world's first airborne 3 backscatter (β) + 2 extinction (α) High Spectral Resolution Lidar (HSRL-2). HSRL-2 measures particle backscatter coefficients at 355, 532, and 1064 nm, and particle extinction coefficients at 355 and 532 nm. The instrument has been developed by the NASA Langley Research Center. The instrument was operated during Phase 1 of the Department of Energy (DOE) Two-Column Aerosol Project (TCAP) in July 2012. We observed pollution outflow from the northeastern coast of the US out over the western Atlantic Ocean. Lidar ratios were 50-60 sr at 355 nm and 60-70 sr at 532 nm. Extinction-related Ångström exponents were on average 1.2-1.7, indicating comparably small particles. Our novel automated, unsupervised data inversion algorithm retrieved particle effective radii of approximately 0.2 μm, which is in agreement with the large Ångström exponents. We find good agreement with particle size parameters obtained from coincident in situ measurements carried out with the DOE Gulfstream-1 aircraft.Peer reviewedFinal Published versio

    Study of the technology of joint procurement of medicinal preparations for state needs by medical organizations of the Tyumen region

    Get PDF
    The article presents the results of a study of 30 joint procurement of medicines for state needs by medical organizations of the Tyumen region, 450 state contracts for their supply, and a feature of the formation of the initial (maximum) contract price is shown. The study of auction documentation showed that in order to conduct joint auctions it is necessary to develop a unified approach (algorithm) for the formation of lots by customers according to the principle of including one international non-proprietary name, one dosage and quantity in one lot. Drugs with different dosages to form in a separate lot. Customers use a single initial maximum contract price. Conducting joint (centralized, consolidated) procurement of medicines for medical organizations has a number of advantages in managing the supply of drugs to state budgetary healthcare institutions of the Tyumen region and allows for efficient use of customer’s funds.В статье даны результаты изучения проведенных 30 совместных закупок лекарственных препаратов для государственных нужд медицинскими организациями Тюменской области, 450 государственных контрактов на их поставку, показана особенность формирования начальной (максимальной) цены контракта. Изучение аукционной документации показало, что для проведения совместных аукционов необходимо выработать единый подход (алгоритм) формирования лотов заказчиками по принципу включения в один лот одного международного непатентованного наименования, одной дозировки и количества. Лекарственные препараты с различной дозировкой формировать в отдельный лот. Заказчикам использовать единую начальную максимальную цену контракта. Проведение совместных (централизованных, консолидированных) закупок лекарственных препаратов для медицинских организаций имеет ряд преимуществ в управлении лекарственным обеспечением государственных бюджетных учреждений здравоохранения Тюменской области и позволяет эффективно использовать средства заказчика

    A13K-0336: Airborne Multi-Wavelength High Spectral Resolution Lidar for Process Studies and Assessment of Future Satellite Remote Sensing Concepts

    Get PDF
    NASA Langley recently developed the world's first airborne multi-wavelength high spectral resolution lidar (HSRL). This lidar employs the HSRL technique at 355 and 532 nm to make independent, unambiguous retrievals of aerosol extinction and backscatter. It also employs the standard backscatter technique at 1064 nm and is polarization-sensitive at all three wavelengths. This instrument, dubbed HSRL-2 (the secondgeneration HSRL developed by NASA Langley), is a prototype for the lidar on NASA's planned Aerosols- Clouds-Ecosystems (ACE) mission. HSRL-2 completed its first science mission in July 2012, the Two-Column Aerosol Project (TCAP) conducted by the Department of Energy (DOE) in Hyannis, MA. TCAP presents an excellent opportunity to assess some of the remote sensing concepts planned for ACE: HSRL-2 was deployed on the Langley King Air aircraft with another ACE-relevant instrument, the NASA GISS Research Scanning Polarimeter (RSP), and flights were closely coordinated with the DOE's Gulfstream-1 aircraft, which deployed a variety of in situ aerosol and trace gas instruments and the new Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR). The DOE also deployed their Atmospheric Radiation Measurement Mobile Facility and their Mobile Aerosol Observing System at a ground site located on the northeastern coast of Cape Cod for this mission. In this presentation we focus on the capabilities, data products, and applications of the new HSRL-2 instrument. Data products include aerosol extinction, backscatter, depolarization, and optical depth; aerosol type identification; mixed layer depth; and rangeresolved aerosol microphysical parameters (e.g., effective radius, index of refraction, single scatter albedo, and concentration). Applications include radiative closure studies, studies of aerosol direct and indirect effects, investigations of aerosol-cloud interactions, assessment of chemical transport models, air quality studies, present (e.g., CALIPSO) and future (e.g., EarthCARE) satellite calibration/validation, and development/assessment of advanced retrieval techniques for future satellite applications (e.g., lidar+polarimeter retrievals of aerosol and cloud properties). We will also discuss the relevance of HSRL-2 measurement capabilities to the ACE remote sensing concept

    Spatially-coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: The NASA ACTIVATE dataset

    Get PDF
    The NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) produced a unique dataset for research into aerosol-cloud-meteorology interactions. An HU-25 Falcon and King Air conducted systematic and spatially coordinated flights over the northwest Atlantic Ocean. This paper describes the ACTIVATE flight strategy, instrument and complementary dataset products, data access and usage details, and data application notes

    Calibration of a high spectral resolution lidar using a michelson interferometer, with data examples from ORACLES

    Get PDF
    © 2018 Optical Society of America]. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.The NASA Langley airborne second-generation High Spectral Resolution Lidar (HSRL-2) uses a density-tuned field-widened Michelson interferometer to implement the HSRL technique at 355 nm. The Michelson interferometer optically separates the received backscattered light between two channels, one of which is dominated by molecular backscattering, while the other contains most of the light backscattered by particles. This interferometer achieves high and stable contrast ratio, defined as the ratio of particulate backscatter signal received by the two channels. We show that a high and stable contrast ratio is critical for precise and accurate backscatter and extinction retrievals. Here, we present retrieval equations that take into account the incomplete separation of particulate and molecular backscatter in the measurement channels. We also show how the accuracy of the contrast ratio assessment propagates to error in the optical properties. For both backscattering and extinction, larger errors are produced by underestimates of the contrast ratio (compared to overestimates), more extreme aerosol loading, and—most critically—smaller true contrast ratios. We show example results from HSRL-2 aboard the NASA ER-2 aircraft from the 2016 ORACLES field campaign in the southeast Atlantic, off the coast of Africa, during the biomass burning season. We include a case study where smoke aerosol in two adjacent altitude layers showed opposite differences in extinction- and backscatter-related Ångström exponents and a reversal of the lidar ratio spectral dependence, signatures which are shown to be consistent with a relatively modest difference in smoke particle size.Peer reviewe

    Information content and sensitivity of the 3<i>β</i>&thinsp;+ 2<i>α</i> lidar measurement system for aerosol microphysical retrievals

    No full text
    There is considerable interest in retrieving profiles of aerosol effective radius, total number concentration, and complex refractive index from lidar measurements of extinction and backscatter at several wavelengths. The combination of three backscatter channels plus two extinction channels (3β + 2α) is particularly important since it is believed to be the minimum configuration necessary for the retrieval of aerosol microphysical properties and because the technological readiness of lidar systems permits this configuration on both an airborne and future spaceborne instrument. The second-generation NASA Langley airborne High Spectral Resolution Lidar (HSRL-2) has been making 3β + 2α measurements since 2012. The planned NASA Aerosol/Clouds/Ecosystems (ACE) satellite mission also recommends the 3β + 2α combination.Here we develop a deeper understanding of the information content and sensitivities of the 3β + 2α system in terms of aerosol microphysical parameters of interest. We use a retrieval-free methodology to determine the basic sensitivities of the measurements independent of retrieval assumptions and constraints. We calculate information content and uncertainty metrics using tools borrowed from the optimal estimation methodology based on Bayes' theorem, using a simplified forward model look-up table, with no explicit inversion. The forward model is simplified to represent spherical particles, monomodal log-normal size distributions, and wavelength-independent refractive indices. Since we only use the forward model with no retrieval, the given simplified aerosol scenario is applicable as a best case for all existing retrievals in the absence of additional constraints. Retrieval-dependent errors due to mismatch between retrieval assumptions and true atmospheric aerosols are not included in this sensitivity study, and neither are retrieval errors that may be introduced in the inversion process. The choice of a simplified model adds clarity to the understanding of the uncertainties in such retrievals, since it allows for separately assessing the sensitivities and uncertainties of the measurements alone that cannot be corrected by any potential or theoretical improvements to retrieval methodology but must instead be addressed by adding information content.The sensitivity metrics allow for identifying (1) information content of the measurements vs. a priori information; (2) error bars on the retrieved parameters; and (3) potential sources of cross-talk or &quot;compensating&quot; errors wherein different retrieval parameters are not independently captured by the measurements. The results suggest that the 3β + 2α measurement system is underdetermined with respect to the full suite of microphysical parameters considered in this study and that additional information is required, in the form of additional coincident measurements (e.g., sun-photometer or polarimeter) or a priori retrieval constraints. A specific recommendation is given for addressing cross-talk between effective radius and total number concentration
    corecore