953 research outputs found
Broadband THz study of excitonic resonances in the high-density regime
We report the first terahertz study of the intra-excitonic 1s-2p transition
at high excitation densities in GaAs/AlGaAs quantum wells. A strong shift,
broadening, and ultimately the disappearance of this resonance occurs with
increasing density, after ultrafast photoexcitation at the near-infrared
exciton line. Densities of excitons and unbound electron-hole pairs are
followed quantitatively using a model of the composite terahertz dielectric
response. Comparison with near-infrared absorption changes reveals a
significantly enhanced energy shift and broadening of the intra-excitonic
resonance.Comment: 4 pages, 4 figure
Ultrafast Enhancement of Ferromagnetism via Photoexcited Holes in GaMnAs
We report on the observation of ultrafast photo-enhanced ferromagnetism in
GaMnAs. It is manifested as a transient magnetization increase on a 100-ps time
scale, after an initial sub-ps demagnetization. The dynamic magnetization
enhancement exhibits a maximum below the Curie temperature Tc and dominates the
demagnetization component when approaching Tc. We attribute the observed
ultrafast collective ordering to the p-d exchange interaction between
photoexcited holes and Mn spins, leading to a correlation-induced peak around
20K and a transient increase in Tc.Comment: 4 page
Ultrafast dynamics of coherences in the quantum Hall system
Using three-pulse four-wave-mixing optical spectroscopy, we study the
ultrafast dynamics of the quantum Hall system. We observe striking differences
as compared to an undoped system, where the 2D electron gas is absent. In
particular, we observe a large off-resonant signal with strong oscillations.
Using a microscopic theory, we show that these are due to many-particle
coherences created by interactions between photoexcited carriers and collective
excitations of the 2D electron gas. We extract quantitative information about
the dephasing and interference of these coherences.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Let
Observation of inter-Landau-level quantum coherence in semiconductor quantum wells
Using three-pulse four-wave-mixing femtosecond spectroscopy, we excite a
non-radiative coherence between the discrete Landau levels of an undoped
quantum well and study its dynamics. We observe quantum beats that reflect the
time evolution of the coherence between the two lowest Landau level
magnetoexcitons. We interpret our observations using a many-body theory and
find that the inter Landau level coherence decays with a new time constant,
substantially longer than the corresponding interband magnetoexciton dephasing
times. Our results indicate a new intraband excitation dynamics that cannot be
described in terms of uncorrelated interband excitations.Comment: 5 pages, 5 figures, to appear in Phys. Rev. B Rapid Communication
Transient terahertz spectroscopy of excitons and unbound carriers in quasi two-dimensional electron-hole gases
We report a comprehensive experimental study and detailed model analysis of
the terahertz dielectric response and density kinetics of excitons and unbound
electron-hole pairs in GaAs quantum wells. A compact expression is given, in
absolute units, for the complex-valued terahertz dielectric function of
intra-excitonic transitions between the 1s and higher-energy exciton and
continuum levels. It closely describes the terahertz spectra of resonantly
generated excitons. Exciton ionization and formation are further explored,
where the terahertz response exhibits both intra-excitonic and Drude features.
Utilizing a two-component dielectric function, we derive the underlying exciton
and unbound pair densities. In the ionized state, excellent agreement is found
with the Saha thermodynamic equilibrium, which provides experimental
verification of the two-component analysis and density scaling. During exciton
formation, in turn, the pair kinetics is quantitatively described by a Saha
equilibrium that follows the carrier cooling dynamics. The terahertz-derived
kinetics is, moreover, consistent with time-resolved luminescence measured for
comparison. Our study establishes a basis for tracking pair densities via
transient terahertz spectroscopy of photoexcited quasi-two-dimensional
electron-hole gases.Comment: 14 pages, 8 figures, final versio
Charge transport and phase transition in exciton rings
The macroscopic exciton rings observed in the photoluminescence (PL) patterns
of excitons in coupled quantum wells (CQWs) are explained by a series of
experiments and a theory based on the idea of carrier imbalance, transport and
recombination. The rings are found to be a source of cold excitons with
temperature close to that of the lattice. We explored states of excitons in the
ring over a range of temperatures down to 380 mK. These studies reveal a sharp,
albeit continuous, second order phase transition to a low-temperature ordered
exciton state, characterized by ring fragmentation into a periodic array of
aggregates. An instability at the onset of degeneracy in the cold exciton
system, due to stimulated exciton formation, is proposed as the transition
mechanism.Comment: 8 pages including 4 figure
Photon-energy dissipation caused by an external electric circuit in "virtual" photo-excitation processes
We consider generation of an electrical pulse by an optical pulse in the
``virtual excitation'' regime. The electronic system, which is any
electro-optic material including a quantum well structure biased by a dc
electric field, is assumed to be coupled to an external circuit. It is found
that the photon frequency is subject to an extra red shift in addition to the
usual self-phase modulation, whereas the photon number is conserved. The Joule
energy consumed in the external circuit is supplied only from the extra red
shift.Comment: 4 pages, 1 fugur
- …