54 research outputs found

    Broadband THz study of excitonic resonances in the high-density regime

    Get PDF
    We report the first terahertz study of the intra-excitonic 1s-2p transition at high excitation densities in GaAs/AlGaAs quantum wells. A strong shift, broadening, and ultimately the disappearance of this resonance occurs with increasing density, after ultrafast photoexcitation at the near-infrared exciton line. Densities of excitons and unbound electron-hole pairs are followed quantitatively using a model of the composite terahertz dielectric response. Comparison with near-infrared absorption changes reveals a significantly enhanced energy shift and broadening of the intra-excitonic resonance.Comment: 4 pages, 4 figure

    Decoherence-Free Subspaces for Multiple-Qubit Errors: (I) Characterization

    Full text link
    Coherence in an open quantum system is degraded through its interaction with a bath. This decoherence can be avoided by restricting the dynamics of the system to special decoherence-free subspaces. These subspaces are usually constructed under the assumption of spatially symmetric system-bath coupling. Here we show that decoherence-free subspaces may appear without spatial symmetry. Instead, we consider a model of system-bath interactions in which to first order only multiple-qubit coupling to the bath is present, with single-qubit system-bath coupling absent. We derive necessary and sufficient conditions for the appearance of decoherence-free states in this model, and give a number of examples. In a sequel paper we show how to perform universal and fault tolerant quantum computation on the decoherence-free subspaces considered in this paper.Comment: 18 pages, no figures. Major changes. Section on universal fault tolerant computation removed. This section contained a crucial error. A new paper [quant-ph/0007013] presents the correct analysi

    Discovery of diverse and functional antibodies from large human repertoire antibody libraries

    Get PDF
    AbstractPhage display antibody libraries have a proven track record for the discovery of therapeutic human antibodies, increasing the demand for large and diverse phage antibody libraries for the discovery of new therapeutics. We have constructed naïve antibody phage display libraries in both Fab and scFv formats, with each library having more than 250billion clones that encompass the human antibody repertoire. These libraries show high fidelity in open reading frame and expression percentages, and their V-gene family distribution, VH-CDR3 length and amino acid usage mirror the natural diversity of human antibodies. Both the Fab and scFv libraries show robust sequence diversity in target-specific binders and differential V-gene usage for each target tested, supporting the use of libraries that utilize multiple display formats and V-gene utilization to maximize antibody-binding diversity. For each of the targets, clones with picomolar affinities were identified from at least one of the libraries and for the two targets assessed for activity, functional antibodies were identified from both libraries

    Optical absorption of type-II superlattices.

    No full text
    International audienceOptical spectra of type-II superlattices are presented, including Coulomb interaction and continuum states. We clarify the relative importance of above- and below-barrier transitions. By gradually increasing the band-gap modulation, we visualize the transition from a bulk semiconductor to a type-I or type-II superlattice. We show that transitions that dominate the spectrum of a type-II superlattice are absent in the spectrum of a type-I superlattice and vice versa. The interplay of size and Landau quantization in the optical absorption is studied for both a type-I superlattice and a type-II superlattice in a perpendicular magnetic field
    • …
    corecore