15 research outputs found

    Displacement of Boron from the Silicon Crystal Nodes

    Get PDF
    The process of boron displacement from the nodes into interstitial positions by interstitial Si atoms in silicon (Watkins effect) on the conditions of implantation and annealing has been investigated with help of X-ray diffraction and electrical methods. It was revealed that the efficiency of the Watkins substitution is determined by the ion current density (level of ionization). With increasing of the ionization level in the implanted layer during implantation or annealing (additional low-energy electron irradiation) the replacement process may be suppressed

    Nitrogen as Annihilation Centre for Point Defects in Implanted Silicon

    Get PDF
    The accumulation of radiation defects in silicon implanted with 150 keV N+ ions at high ion current density (20 A cm-2) and low density (0.05 A cm-2) was investigated by means of X-ray double-crystal spectrometer and EPR method. At high ion current density the radiation defects accumulate up to amorphization at the ion dose of 1ο‚΄1015 cm-2. At low ion current density the curve of lattice parameter change on dose has oscillatory view and amorphization of the layer is not achieved at least up to ion dose of 1.4ο‚΄1016 cm-2. The processes of the nitrogen atoms capture on the vacancy defects and Watkins displacement of them from the nodes work as additional channel of radiation defect annihilation. At high ion current densities and at high level of ionization in the implanted layer process of Watkins substitution is suppressed

    Displacement of Boron from the Silicon Crystal Nodes

    No full text
    The process of boron displacement from the nodes into interstitial positions by interstitial Si atoms in silicon (Watkins effect) on the conditions of implantation and annealing has been investigated with help of X-ray diffraction and electrical methods. It was revealed that the efficiency of the Watkins substitution is determined by the ion current density (level of ionization). With increasing of the ionization level in the implanted layer during implantation or annealing (additional low-energy electron irradiation) the replacement process may be suppressed

    Nitrogen as Annihilation Centre for Point Defects in Implanted Silicon

    No full text
    The accumulation of radiation defects in silicon implanted with 150 keV N+ ions at high ion current density (20 A cm-2) and low density (0.05 A cm-2) was investigated by means of X-ray double-crystal spectrometer and EPR method. At high ion current density the radiation defects accumulate up to amorphization at the ion dose of 1ο‚΄1015 cm-2. At low ion current density the curve of lattice parameter change on dose has oscillatory view and amorphization of the layer is not achieved at least up to ion dose of 1.4ο‚΄1016 cm-2. The processes of the nitrogen atoms capture on the vacancy defects and Watkins displacement of them from the nodes work as additional channel of radiation defect annihilation. At high ion current densities and at high level of ionization in the implanted layer process of Watkins substitution is suppressed

    Π‘ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ ΠΈΠΎΠ½Π½ΠΎ-Π»ΡƒΡ‡Π΅Π²Ρ‹Π΅ ΠΈ Ρ„ΠΎΡ‚ΠΎΠ½Π½Ρ‹Π΅ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² для ΠΌΠΈΠΊΡ€ΠΎ-, ΠΎΠΏΡ‚ΠΎ- ΠΈ наноэлСктроники / Π€. Π€. ΠšΠΎΠΌΠ°Ρ€ΠΎΠ², А. Π . ЧСлядинский

    No full text
    ΠŸΠΎΠ»Π½Ρ‹ΠΉ тСкст Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π° доступСн ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»ΡΠΌ сСти Π‘Π“Π£.The text-book focuses on the main ways of solving problems of semiconductor materials. Radiation defects, their accumulation, structure transformation into residual damage, influence on electrical activation and diffusion of impurities, formation of inclusions of the impurity second phase and methods of suppression of damage in implanted silicon are analyzed. It is demonstrated that using specially implanted impurities or defects we can fight impurities and defects

    Formation of secondary damage in silicon implanted with carbon and boron ions

    No full text
    ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€ΠΎΡΠ²Π΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉ элСктронной микроскопии исслСдовано ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ остаточных протяТСнных Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ Π² ΠΊΡ€Π΅ΠΌΠ½ΠΈΠΈ, ΠΈΠΌΠΏΠ»Π°Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ ΠΈΠΎΠ½Π°ΠΌΠΈ Π‘+ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄Π²ΠΎΠΉΠ½ΠΎΠΉ ΠΈΠΌ- ΠΏΠ»Π°Π½Ρ‚Π°Ρ†ΠΈΠΈ Π‘+ ΠΈ Π’+. УстановлСно, Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ остаточных Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎ- Π΄Π°Π²Π»Π΅Π½ΠΎ благодаря аннигиляции Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² Π½Π° Π°Ρ‚ΠΎΠΌΠ°Ρ… Π‘ (эффСкт Воткинса). Поло- ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ эффСкт достигаСтся ΠΏΡ€ΠΈ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ внСдряСмого ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° ΠΏΠΎ ΡƒΠ·Π»Π°ΠΌ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΊΠΈ, Ρ‡Ρ‚ΠΎ обСспСчиваСтся Π΅Π³ΠΎ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ†ΠΈΠ΅ΠΉ с эффСктивной ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ Ρ‚ΠΎΠΊΠ° ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΏΡƒΡ‡ΠΊΠ° ΠΈΠΎΠ½ΠΎΠ² Π½Π΅ Π½ΠΈΠΆΠ΅ 1,0 мкА⋅см–2
    corecore