24 research outputs found

    Mechanisms of HIV-Nef Induced Endothelial Cell Stress: Implications of HIV-Nef Protein Persistence in Aviremic HIV Patients

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)HIV-associated cardio-pulmonary vascular pathologies such as coronary artery disease, pulmonary hypertension and emphysema remain a major issue in the HIVinfected population even in the era of antiretroviral therapy (ART). The continued production of HIV encoded pro-apoptotic protein, such as Nef in latently HIV-infected cells is a possible mechanism for vascular dysfunction underlying these diseases. HIVNef persists in two compartments in these patients: (i) extracellular vesicles (EV) of plasma and bronchoalveolar lavage (BAL) fluid and (ii) PBMC and BAL derived cells. Here I demonstrate that the presence of HIV-Nef protein in cells and EV is capable of stressing endothelial cells by inducing ROS production leading to endothelial cell apoptosis. HIV-Nef protein hijacks host cell signaling by interacting with small GTP binding protein Rac1 which activates PAK2 to promote the release of pro-apoptotic cargo containing EV and surface expression of pro-apoptotic protein Endothelial Monocyte Activating Polypeptide II (EMAPII). Using this mechanism, Nef protein robustly induces apoptosis in Human Coronary Artery Endothelial Cells and Human Lung microvascular endothelial cells. Endothelial specific expression of HIV-Nef protein in transgenic mice was sufficient to induce vascular pathologies as evidenced by impaired endothelium mediated vasodilation of the aorta and vascular remodeling and emphysema like alveolar rarefaction in the lung. Furthermore, EV isolated from HIV patients on ART was capable of inducing endothelial apoptosis in a Nef dependent fashion. Of therapeutic interest, EMAPII neutralizing antibodies to block EMAPII mediated apoptosis and statin treatment to ameliorate Nef induced Rac1 signaling was capable of blocking Nef induced endothelial stress in both in vivo and in vitro. In conclusion, HIV-Nef protein uses a Rac1-Pak2 signaling axis to promote its dissemination in EV, which in turn induces endothelial cell stress after its uptake

    Therapeutic Vascular and Immune Normalization in the Melanoma Microenvironment Using STING Agonists

    Get PDF
    CD8+ T-cells are indispensable for immune-mediated rejection of solid cancers. Hence, the conditional enhancement of intratumoral T-cell content and/or function defines a preferred outcome for successful immunotherapies. Activated anti-tumor CD8+ T-cells rely on functional blood vessels for their efficient trafficking to, and extravasation into, the tumor parenchyma. Indeed, pathologic progression of solid tumors is closely associated with the development of structurally and functionally abnormal tumor blood vessels which impede T-cell infiltration into cancer lesions. In this regard, therapeutic dosing of anti-angiogenic interventional strategies fortifies or reprograms tumor blood vessels (or vascular normalization) to significantly improve intratumoral CD8+ T-cell infiltration. Intriguingly, agonists of Stimulator of Interferon Genes (STING), which evolved from a class of anti-angiogenic agents, have recently demonstrated significant clinical promise for their ability to enhance CD8+ T-cell recruitment into tumors but whether therapeutic changes to the tumor vasculature underlies successful immune-mediated tumor control remain only partially resolved. Indeed, in this thesis, I demonstrate that intratumoral administration of STING agonist ADU S-100 induces vascular normalization (i.e., improved vascular perfusion, enhanced pericyte coverage and increased endothelial activation) and enhances tumor infiltration by immune cells, specifically, CD8+ T-cells and CD11c+ dendritic cells (DC). STING activation also increases local production of pro-inflammatory cytokines/chemokines that sponsor the development of high endothelial venules (HEV) and HEV-associated tertiary lymphoid structures (TLS) within the therapeutic melanoma tumor microenvironment (TME). HEV/TLS formation with STING agonism was further linked to evidence of local T-cell cross-priming by tumor-resident antigen presenting cells (APC) within the tumor microenvironment (TME), with the therapeutic tumor infiltrating lymphocyte (TIL) repertoire exhibiting enrichment in T cell clonotypes found in the periphery as well as those detected only within the TME. These vasculature-centric underpinnings for the efficacy of STING agonist-based interventions provide enthusiasm for improved translational value of future combinational cancer immunotherapies that seek to integrate these agents

    Increased cardiovascular disease risk in the HIV-positive population on ART: potential role of HIV-Nef and Tat

    Get PDF
    With effective antiretroviral therapy (ART), many HIV-infected people die of diseases other than acquired immune deficiency syndrome (AIDS). In particular, coronary artery disease has emerged as one of most critical complications of HIV infection and a major cause of morbidity and mortality. Although reportedly antiretroviral combination therapy itself may accelerate atherosclerosis by enhancing dyslipidemia, most recent epidemiological studies support the notion that HIV infection itself contributes to cardiovascular disease. However, it is still a mystery how the virus can contribute to cardiovascular disease development even while suppressed by ARTs. This review discusses the current understanding of interactions between HIV infection and cardiovascular diseases in both clinical and experimental studies with special focus on those viral proteins that are still produced by HIV. This will help infectious disease/vascular biology experts to gain insights into the pathophysiological mechanisms of HIV-associated cardiovascular disease and new trends to treat and prevent cardiovascular disease in the HIV-infected population

    Viral Bad News Sent by EVAIL

    Get PDF
    This article reviews the current knowledge on how viruses may utilize Extracellular Vesicle Assisted Inflammatory Load (EVAIL) to exert pathologic activities. Viruses are classically considered to exert their pathologic actions through acute or chronic infection followed by the host response. This host response causes the release of cytokines leading to vascular endothelial cell dysfunction and cardiovascular complications. However, viruses may employ an alternative pathway to soluble cytokine-induced pathologies—by initiating the release of extracellular vesicles (EVs), including exosomes. The best-understood example of this alternative pathway is human immunodeficiency virus (HIV)-elicited EVs and their propensity to harm vascular endothelial cells. Specifically, an HIV-encoded accessory protein called the “negative factor” (Nef) was demonstrated in EVs from the body fluids of HIV patients on successful combined antiretroviral therapy (ART); it was also demonstrated to be sufficient in inducing endothelial and cardiovascular dysfunction. This review will highlight HIV-Nef as an example of how HIV can produce EVs loaded with proinflammatory cargo to disseminate cardiovascular pathologies. It will further discuss whether EV production can explain SARS-CoV-2-mediated pulmonary and cardiovascular pathologies

    HIV-Nef Protein Persists in the Lungs of Aviremic Patients with HIV and Induces Endothelial Cell Death

    Get PDF
    It remains a mystery why HIV-associated end-organ pathologies persist in the era of combined antiretroviral therapy (ART). One possible mechanism is the continued production of HIV-encoded proteins in latently HIV-infected T cells and macrophages. The proapoptotic protein HIV-Nef persists in the blood of ART-treated patients within extracellular vesicles (EVs) and peripheral blood mononuclear cells. Here we demonstrate that HIV-Nef is present in cells and EVs isolated from BAL of patients on ART. We hypothesize that HIV-Nef persistence in the lung induces endothelial apoptosis leading to endothelial dysfunction and further pulmonary vascular pathologies. The presence of HIV-Nef in patients with HIV correlates with the surface expression of the proapoptotic endothelial-monocyte–activating polypeptide II (EMAPII), which was implicated in progression of pulmonary emphysema via mechanisms involving endothelial cell death. HIV-Nef protein induces EMAPII surface expression in human embryonic kidney 293T cells, T cells, and human and mouse lung endothelial cells. HIV-Nef packages itself into EVs and increases the amount of EVs secreted from Nef-expressing T cells and Nef-transfected human embryonic kidney 293T cells. EVs from BAL of HIV+ patients and Nef-transfected cells induce apoptosis in lung microvascular endothelial cells by upregulating EMAPII surface expression in a PAK2-dependent fashion. Transgenic expression of HIV-Nef in vascular endothelial–cadherin+ endothelial cells leads to lung rarefaction, characterized by reduced alveoli and overall increase in lung inspiratory capacity. These changes occur concomitantly with lung endothelial cell apoptosis. Together, these data suggest that HIV-Nef induces endothelial cell apoptosis via an EMAPII-dependent mechanism that is sufficient to cause pulmonary vascular pathologies even in the absence of inflammation

    Monitoring and Modulating Diet and Gut Microbes to Enhance Response and Reduce Toxicity to Cancer Treatment

    No full text
    The gut microbiome comprises a diverse array of microbial species that have been shown to dynamically modulate host immunity both locally and systemically, as well as contribute to tumorigenesis. In this review, we discuss the scientific evidence on the role that gut microbes and diet play in response and toxicity to cancer treatment. We highlight studies across multiple cancer cohorts that have shown an association between particular gut microbiome signatures and an improved response to immune checkpoint blockade, chemotherapy, and adoptive cell therapies, as well as the role of particular microbes in driving treatment-related toxicity and how the microbiome can be modulated through strategies, such as fecal transplant. We also summarize the current literature that implicate high fiber and ketogenic diets in improved response rates to immunotherapy and chemotherapy, respectively. Finally, we discuss the relevance of these findings in the context of patient care, advocate for a holistic approach to cancer treatment, and comment on the next frontier of targeted gut and tumor microbiome modulation through novel therapeutics, dietary intervention, and precision-medicine approaches

    STING Agonists as Cancer Therapeutics

    No full text
    The interrogation of intrinsic and adaptive resistance to cancer immunotherapy has identified lack of antigen presentation and type I interferon signaling as biomarkers of non-T-cell-inflamed tumors and clinical progression. A myriad of pre-clinical studies have implicated the cGAS/stimulator of interferon genes (STING) pathway, a cytosolic DNA-sensing pathway that drives activation of type I interferons and other inflammatory cytokines, in the host immune response against tumors. The STING pathway is also increasingly understood to have other anti-tumor functions such as modulation of the vasculature and augmentation of adaptive immunity via the support of tertiary lymphoid structure development. Many natural and synthetic STING agonists have entered clinical development with the first generation of intra-tumor delivered cyclic dinucleotides demonstrating safety but only modest systemic activity. The development of more potent and selective STING agonists as well as novel delivery systems that would allow for sustained inflammation in the tumor microenvironment could potentially augment response rates to current immunotherapy approaches and overcome acquired resistance. In this review, we will focus on the latest developments in STING-targeted therapies and provide an update on the clinical development and application of STING agonists administered alone, or in combination with immune checkpoint blockade or other approaches

    Monitoring and Modulating Diet and Gut Microbes to Enhance Response and Reduce Toxicity to Cancer Treatment

    No full text
    The gut microbiome comprises a diverse array of microbial species that have been shown to dynamically modulate host immunity both locally and systemically, as well as contribute to tumorigenesis. In this review, we discuss the scientific evidence on the role that gut microbes and diet play in response and toxicity to cancer treatment. We highlight studies across multiple cancer cohorts that have shown an association between particular gut microbiome signatures and an improved response to immune checkpoint blockade, chemotherapy, and adoptive cell therapies, as well as the role of particular microbes in driving treatment-related toxicity and how the microbiome can be modulated through strategies, such as fecal transplant. We also summarize the current literature that implicate high fiber and ketogenic diets in improved response rates to immunotherapy and chemotherapy, respectively. Finally, we discuss the relevance of these findings in the context of patient care, advocate for a holistic approach to cancer treatment, and comment on the next frontier of targeted gut and tumor microbiome modulation through novel therapeutics, dietary intervention, and precision-medicine approaches

    STING agonist-based treatment promotes vascular normalization and tertiary lymphoid structure formation in the therapeutic melanoma microenvironment

    No full text
    Background The degree of immune infiltration in tumors, especially CD8+ T cells, greatly impacts patient disease course and response to interventional immunotherapy. Enhancement of tumor infiltrating lymphocyte (TIL) is a critical element of efficacious therapy and one that may be achieved via administration of agents that promote tumor vascular normalization (VN) and/or induce the development of tertiary lymphoid structures (TLS) within the tumor microenvironment (TME).Methods Low-dose stimulator of interferon genes (STING) agonist ADU S-100 (5 µg/mouse) was delivered intratumorally to established subcutaneous B16.F10 melanomas on days 10, 14 and 17 post-tumor inoculation. Treated and control tumors were isolated at various time points to assess transcriptional changes associated with VN and TLS formation via quantitative PCR (qPCR), with corollary immune cell composition changes in isolated tissues determined using flow cytometry and immunofluorescence microscopy. In vitro assays were performed on CD11c+ BMDCs treated with 2.5 µg/mL ADU S-100 or CD11c+ DCs isolated from tumor digests and associated transcriptional changes analyzed via qPCR or profiled using DNA microarrays. For T cell repertoireβ-CDR3 analyses, T cell CDR3 was sequenced from gDNA isolated from splenocytes and enzymatically digested tumors.Results We report that activation of STING within the TME leads to slowed melanoma growth in association with increased production of antiangiogenic factors including Tnfsf15 (Vegi) and Cxcl10, and TLS-inducing factors including Ccl19, Ccl21, Lta, Ltb and Light. Therapeutic responses resulting from intratumoral STING activation were characterized by improved VN, enhanced tumor infiltration by CD8+ T cells and CD11c+ DCs and local TLS neogenesis, all of which were dependent on host expression of STING. Consistent with a central role for DC in TLS formation, ADU S-100-activated mCD11c+ DCs also exhibited upregulated expression of TLS promoting factors including lymphotoxin-α (LTA), interleukin (IL)-36, inflammatory chemokines and type I interferons in vitro and in vivo. TLS formation in ADU S-100-treated mice was associated with the development of a highly oligoclonal TIL repertoire enriched in expanded T cell clonotypes unique to the TME and not detected in the periphery.Conclusions Our data support the premise that i.t. delivery of low-dose STING agonist promotes VN and a proinflammatory TME supportive of TLS formation, enrichment in the TIL repertoire and tumor growth control
    corecore