22 research outputs found

    Migration of semiflexible polymers in microcapillary flow

    Full text link
    The non-equilibrium structural and dynamical properties of a semiflexible polymer confined in a cylindrical microchannel and exposed to a Poiseuille flow is studied by mesoscale hydrodynamic simulations. For a polymer with a length half of its persistence length, large variations in orientation and conformations are found as a function of radial distance and flow strength. In particular, the polymer exhibits U-shaped conformations near the channel center. Hydrodynamic interactions lead to strong cross-streamline migration. Outward migration is governed by the polymer orientation and the corresponding anisotropy in its diffusivity. Strong tumbling motion is observed, with a tumbling time which exhibits the same dependence on Peclet number as a polymer in shear flow.Comment: 6 pages, 7 figures, accepted by EP

    Flow-Induced Helical Coiling of Semiflexible Polymers in Structured Microchannels

    Get PDF
    The conformations of semiflexible (bio)polymers are studied in flow through geometrically structured microchannels. Using mesoscale hydrodynamics simulations, we show that the polymer undergoes a rod-to-helix transition as it moves from the narrow high-velocity region into the wide low-velocity region of the channel. The transient helix formation is the result of a non-equilibrium and non-stationary buckling transition of the semiflexible polymer, which is subjected to a compressive force originating from the fluid-velocity variation in the channel. The helix properties depend on the diameter ratio of the channel, the polymer bending rigidity, and the flow strength.Comment: Accepted in Phys. Rev. Let
    corecore