335 research outputs found

    Hyperpolarized ^1H NMR employing low γ nucleus for spin polarization storage

    Get PDF
    The PASADENA (parahydrogen and synthesis allow dramatically enhanced nuclear alignment)(1, 2) and DNP (Dynamic Nuclear Polarization)(3) methods efficiently hyperpolarize biologically relevant nuclei such as 1^H, (31)^P, (13)^C, (15)^N achieving signal enhancement by a factor of ~ 100000 on currently utilized MRI scanners. Recently, many groups have demonstrated the utility of hyperpolarized MR in biological systems using hyperpolarized (13)^C biomarkers with a relatively long spin lattice relaxation time T_1 on the order of tens of seconds.(4-7) Moreover, hyperpolarized (15)^N for biomedical MR has been proposed due to even longer spin lattice relaxations times.(8) An additional increase of up to tens of minutes in the lifetime of hyperpolarized agent in vivo could be achieved by using the singlet states of low gamma (γ) nuclei.(9) However, as NMR receptivity scales as γ^3 for spin 1/2 nuclei, direct NMR detection of low γ nuclei results in a lower signal-to-noise ratio compared to proton detection. While protons are better nuclei for detection, short spin lattice relaxation times prevent direct 1^H hyperpolarized MR in biomedical applications

    P-Match: transcription factor binding site search by combining patterns and weight matrices

    Get PDF
    P-Match is a new tool for identifying transcription factor (TF) binding sites in DNA sequences. It combines pattern matching and weight matrix approaches thus providing higher accuracy of recognition than each of the methods alone. P-Match is closely interconnected with the TRANSFAC(®) database. In particular, P-Match uses the matrix library as well as sets of aligned known TF-binding sites collected in TRANSFAC(®) and therefore provides the possibility to search for a large variety of different TF binding sites. Using results of extensive tests of recognition accuracy, we selected three sets of optimized cut-off values that minimize either false negatives or false positives, or the sum of both errors. Comparison with the weight matrix approaches such as Match™ tool shows that P-Match generally provides superior recognition accuracy in the area of low false negative errors (high sensitivity). As familiar to the user of Match™, P-Match also allows to save user-specific profiles that include selected subsets of matrices with corresponding TF-binding sites or user-defined cut-off values. Furthermore, a number of tissue-specific profiles are provided that were compiled by the TRANSFAC(®) team. A public version of the P-Match tool is available at

    Unified formulation for helicity and continuous spin fermionic fields

    Full text link
    We propose a unified BRST formulation of general massless fermionic fields of arbitrary mixed-symmetry type in dd-dimensional Minkowski space. Depending on the value of the real parameter the system describes either helicity fields or continuous spin fields. Starting with the unified formulation we derive a number of equivalent descriptions including the triplet formulation, Fang-Fronsdal-Labastida formulation, light-cone formulation and discuss the unfolded formulation.Comment: v2: exposition of the triplet formulation is improved and the triplet Lagrangian for fermionic helicity fields is made precise, references and acknowledgements added; v4: corrected typos, reference and comments adde

    Reconstruction of textiles production process on materials of ceramic finds of the Turovsky settlement

    Get PDF
    Researchers note universal distribution in the territory of Eastern Europe during era of the late Roman times of devices for weaving with inclusion in a design of details from clay. Studying of constructive properties and technical characteristics on ceramic finds has crucial importance for reconstruction of process of house textile production during this era. In this work the analysis of a form of archeological ceramic finds of an era of the late Roman time (the Don Right bank) from the point of view of a possibility of their use as components of tools of textile craft is carried out. Considering that identical ways of creation of textile interlacing were, in many cases, are mastered by the people the related bonds which are not connected among themselves, the technology of weaving of the Japanese cords "kumichimo" was taken as an experiment basis on reconstruction of ancient device for weaving. As a result of the made experiment on creation of the machine for weaving of cords it was succeeded to reconstruct successfully technological process, ways and methods of production of textiles. The methods used in the course of reconstruction and the technician correspond to technological capabilities of ancient community both the late Roman time, and the early Iron Age

    RASER MRI: Magnetic resonance images formed spontaneously exploiting cooperative nonlinear interaction

    Get PDF
    The spatial resolution of magnetic resonance imaging (MRI) is fundamentally limited by the width of Lorentzian point spread functions (PSF) associated with the exponential decay rate of transverse magnetization (1/T2*). Here we show a different contrast mechanism in MRI by establishing RASER (Radio-frequency Amplification by Stimulated Emission of Radiation) in imaged media. RASER imaging bursts emerge out of noise and without applying (Radio Frequency) RF pulses when placing spins with sufficient population inversion in a weak magnetic field gradient. A small difference in initial population inversion density creates a stronger image contrast than conventional MRI. This contrast is based on the cooperative nonlinear interaction between all slices. On the other hand, the cooperative nonlinear interaction gives rise to imaging artifacts, such as amplitude distortions and side lobes outside of the imaging domain. Both the contrast and the artifacts are demonstrated experimentally and predicted by simulations based on a proposed theory. This theory of RASER MRI is strongly connected to many other distinct fields related to synergetics and non-linear dynamics

    Exploring synchrony and chaos of parahydrogen-pumped two-compartment radio-frequency amplification by stimulated emission of radiation

    Get PDF
    A nuclear-spin-based RASER (radio-frequency amplification by stimulated emission of radiation) is an ideal experimental system to explore nonlinear interaction phenomena of nuclear spins coupled via virtual photons to a resonator. This is due to the RASER being stable for several hours, allowing for extended observation of these phenomena. Nonlinear phenomena in multimode RASERs range from mode oscillations in synchrony, frequency shifts, frequency combs, period doublings, and even chaos. These phenomena are observed in a parahydrogen-pumped two-compartment proton RASER. In two independently pumped compartments, the separation in frequency space between the two RASER modes is precisely controlled with a magnetic field gradient. By controlling the mode separation, we can select the type of nonlinear phenomena observed. A key finding is that the ranges of mode separation where chaos and synchrony occur are very close together. The experimental results are supported by numerical simulations, based on two-mode RASER equations

    RASER MRI: Magnetic resonance images formed spontaneously exploiting cooperative nonlinear interaction

    Get PDF
    The spatial resolution of magnetic resonance imaging (MRI) is limited by the width of Lorentzian point spread functions associated with the transverse relaxation rate 1/T2*. Here, we show a different contrast mechanism in MRI by establishing RASER (radio-frequency amplification by stimulated emission of radiation) in imaged media. RASER imaging bursts emerge out of noise and without applying radio-frequency pulses when placing spins with sufficient population inversion in a weak magnetic field gradient. Small local differences in initial population inversion density can create stronger image contrast than conventional MRI. This different contrast mechanism is based on the cooperative nonlinear interaction between all slices. On the other hand, the cooperative nonlinear interaction gives rise to imaging artifacts, such as amplitude distortions and side lobes outside of the imaging domain. Contrast mechanism and artifacts are explored experimentally and predicted by simulations on the basis of a proposed RASER MRI theory

    PASADENA Hyperpolarization of Succinic Acid for MRI and NMR Spectroscopy

    Get PDF
    We use the PASADENA (parahydrogen and synthesis allow dramatically enhanced nuclear alignment) method to achieve ^(13)C polarization of ∼20% in seconds in 1-^(13)C-succinic-d_2 acid. The high-field ^(13)C multiplets are observed as a function of pH, and the line broadening of C1 is pronounced in the region of the pK values. The ^2J_(CH), ^3J_(CH), and ^3J_(HH) couplings needed for spin order transfer vary with pH and are best resolved at low pH leading to our use of pH ∼3 for both the molecular addition of parahydrogen to 1-^(13)C-fumaric acid-d_2 and the subsequent transfer of spin order from the nascent protons to C1 of the succinic acid product. The methods described here may generalize to hyperpolarization of other carboxylic acids. The C1 spin−lattice relaxation time at neutral pH and 4.7 T is measured as 27 s in H_2O and 56 s in D_2O. Together with known rates of succinate uptake in kidneys, this allows an estimate of the prospects for the molecular spectroscopy of metabolism
    • …
    corecore