6 research outputs found

    Trunk coordination in healthy and chronic nonspecific low back pain subjects during repetitive flexion-extension tasks: Effects of movement asymmetry, velocity and load

    No full text
    Multiple joint interactions are critical to produce stable coordinated movements and can be influenced by low back pain and task conditions. Inter-segmental coordination pattern and variability were assessed in subjects with and without chronic nonspecific low back pain (CNSLBP). Kinematic data were collected from 22 CNSLBP and 22 healthy volunteers during repeated trunk flexion-extension in various conditions of symmetry, velocity, and loading; each at two levels. Sagittal plane angular data were time normalized and used to calculate continuous relative phase for each data point. Mean absolute relative phase (MARP) and deviation phase (DP) were derived to quantify lumbar-pelvis and pelvis-thigh coordination patterns and variability. Statistical analysis revealed more in-phase coordination pattern in CNSLBP (p= 0.005). There was less adaptation in the DP for the CNSLBP group, as shown by interactions of Group by Load (p=.008) and Group by Symmetry by Velocity (p=.03) for the DP of pelvis-thigh and lumbar-pelvis couplings, respectively. Asymmetric (p< 0.001) and loaded (p= 0.04) conditions caused less in-phase coordination. Coordination variability was higher during asymmetric and low velocity conditions (p< 0.001). In conclusion, coordination pattern and variability could be influenced by trunk flexion-extension conditions. CNSLBP subjects demonstrated less adaptability of movement pattern to the demands of the flexion-extension task. © 2015 Elsevier B.V

    Transabdominal ultrasound to assess pelvic floor muscle performance during abdominal curl in exercising women

    No full text
    Introduction and hypothesis: The aim of this study was to assess pelvic floor muscle (PFM) function using transabdominal ultrasound (TAUS) in women attending group exercise classes. Specific aims were to: (1) identify the ability to perform a correct elevating PFM contraction and (2) assess bladder-base movement during an abdominal curl exercise. Methods: Ninety women participating in group exercise were recruited to complete a survey and TAUS assessment performed by two qualified Continence and Women’s Health physiotherapists with clinical experience in ultrasound scanning. The assessment comprised three attempts of a PFM contraction and an abdominal curl exercise in crook lying. Bladder-base displacement was measured to determine correct or incorrect activation patterns. Results: Twenty-five percent (n  = 23) of women were unable to demonstrate an elevating PFM contraction, and all women displayed bladder-base depression on abdominal curl (range 0.33–31.2 mm). Parous women displayed, on average, significantly more bladder-base depression than did nulliparous women [15.5 (7.3) mm vs 11.4 (5.8) mm, p < 0.009). Sixty percent (n  = 54) reported stress urinary incontinence (SUI). There was no association between SUI and the inability to perform an elevating PFM contraction (p = 0.278) or the amount of bladder-base depression with abdominal curl [14.1 (7.6) mm SUI vs 14.2 (6.7) mm non-SUI]. Conclusions: TAUS identified that 25 % of women who participated in group exercise were unable to perform a correctly elevating PFM contraction, and all depressed the bladder-base on abdominal curl. Therefore, exercising women may be at risk of PFM dysfunction when performing abdominal curl activities
    corecore