5 research outputs found

    The Role of Time Delay in Sim2real Transfer of Reinforcement Learning for Cyber-Physical Systems

    Full text link
    This paper analyzes the simulation to reality gap in reinforcement learning (RL) cyber-physical systems with fractional delays (i.e. delays that are non-integer multiple of the sampling period). The consideration of fractional delay has important implications on the nature of the cyber-physical system considered. Systems with delays are non-Markovian, and the system state vector needs to be extended to make the system Markovian. We show that this is not possible when the delay is in the output, and the problem would always be non-Markovian. Based on this analysis, a sampling scheme is proposed that results in efficient RL training and agents that perform well in realistic multirotor unmanned aerial vehicle simulations. We demonstrate that the resultant agents do not produce excessive oscillations, which is not the case with RL agents that do not consider time delay in the model.Comment: 6 pages,4 figures, Submitted to ICRA202

    Real-time system identification using deep learning for linear processes with application to unmanned aerial vehicles

    Get PDF
    This paper proposes a novel parametric identification approach for linear systems using Deep Learning (DL) and the Modified Relay Feedback Test (MRFT). The proposed methodology utilizes MRFT to reveal distinguishing frequencies about an unknown process; which are then passed to a trained DL model to identify the underlying process parameters. The presented approach guarantees stability and performance in the identification and control phases respectively, and requires few seconds of observation data to infer the dynamic system parameters. Quadrotor Unmanned Aerial Vehicle (UAV) attitude and altitude dynamics were used in simulation and experimentation to verify the presented methodology. Results show the effectiveness and real-time capabilities of the proposed approach, which outperforms the conventional Prediction Error Method in terms of accuracy, robustness to biases, computational efficiency and data requirements.Comment: 13 pages, 9 figures. Submitted to IEEE access. A supplementary video for the work presented in this paper can be accessed at: https://www.youtube.com/watch?v=dz3WTFU7W7c. This version includes minor style edits for appendix and reference

    Design of Dynamics Invariant LSTM for Touch Based Human-UAV Interaction Detection

    Full text link
    The field of Unmanned Aerial Vehicles (UAVs) has reached a high level of maturity in the last few years. Hence, bringing such platforms from closed labs, to day-to-day interactions with humans is important for commercialization of UAVs. One particular human-UAV scenario of interest for this paper is the payload handover scheme, where a UAV hands over a payload to a human upon their request. In this scope, this paper presents a novel real-time human-UAV interaction detection approach, where Long short-term memory (LSTM) based neural network is developed to detect state profiles resulting from human interaction dynamics. A novel data pre-processing technique is presented; this technique leverages estimated process parameters of training and testing UAVs to build dynamics invariant testing data. The proposed detection algorithm is lightweight and thus can be deployed in real-time using off the shelf UAV platforms; in addition, it depends solely on inertial and position measurements present on any classical UAV platform. The proposed approach is demonstrated on a payload handover task between multirotor UAVs and humans. Training and testing data were collected using real-time experiments. The detection approach has achieved an accuracy of 96\%, giving no false positives even in the presence of external wind disturbances, and when deployed and tested on two different UAVs.Comment: 13 pages, 13 figures, submitted to IEEE access, A supplementary video for the work presented in this paper can be accessed from https://youtu.be/29N_OXBl1m
    corecore