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ABSTRACT System identification is a key discipline within the field of automation that deals with inferring
mathematical models of dynamic systems based on input-output measurements. Conventional identification
methods require extensive data generation and are thus not suitable for real-time applications. In this paper,
a novel real-time approach for the parametric identification of linear systems using Deep Learning (DL)
and the Modified Relay Feedback Test (MRFT) is proposed. The proposed approach requires only a single
steady-state cycle of MRFT, and guarantees stability and performance in the identification and control
phases. The MRFT output is passed to a trained DL model that identifies the underlying process parameters
in milliseconds. A novel modification to the Softmax function is derived to better conform the DL model for
the process identification task. Quadrotor Unmanned Aerial Vehicle (UAV) attitude and altitude dynamics
were used in simulation and experimentation to verify the presented approach. Results show the effectiveness
and real-time capabilities of the proposed approach, which outperforms the conventional Prediction Error
Method in terms of accuracy, robustness to biases, computational efficiency and data requirements.

INDEX TERMS System identification, unmanned aerial vehicles, learning systems, sliding mode control,
process control.

NOMENCLATURE
β Phase switching parameter for the MRFT con-

troller.
βd Phase switching parameter for the MRFT con-

troller corresponding to ϕd .
θ Spherical coordinates’ azimuth angle.
τ Overall time delay.
φ Spherical coordinates’ zenith angle.
φm Phase margin of a given process.
ϕ Phase angle for the excitation of a given process.
ϕd Distinguishing phase for a set of dynamic sys-

tems.
�o Frequency of the steady-state MRFT oscillations.
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ℵ Measurement noise.
a0 Amplitude of the steady-stateMRFT oscillations.
ai Logit for the i’th neuron of the DLmodel’s output

layer.
C(s) Feedback controller acting on a dynamic system.
C∗(s) Optimal feedback controller for process G(s).
ci Parameter of the homogeneous tuning rules with

index i.
D Subspace of model parameters.
D̄ Discretization of subspace D.
e Error signal.
G(s) Transfer function for a dynamic system.
Ĝ(s) Estimated transfer function for a dynamic system.
h Relay amplitude for the MRFT controller.
Keq Lumped gain of dynamic system.
Kc PID controller gain.
L Loss function for training the DL model.
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N Number of measurement samples.
Nd Describing function of a system.
Ep Vector representing model parameters.
pv Process variable.
pi Softmax probability for the i’th neuro of the DL

model’s output layer.
Q Number of unknown model parameters.
r Reference signal.
r0 Spherical coordinates’ radial distance.
Tbody Time constant associated with body dynamics.
Td PID derivative time.
Ti PID integral time.
Tprop Time constant associatedwith propulsion dynam-

ics.
t Index of time.
u Controller action.
u0 Input bias.
Wp Transfer function for a process under test.
X A vector combining N uniformly sampled mea-

surements of pv and u.

I. INTRODUCTION
Since the third industrial revolution, system identification
has been a key element in the development of autonomous
technologies in a wide set of industrial applications. Accurate
knowledge of system dynamics enables the design of robust
and high-performance systems for prediction, planning and
control. Unmanned Aerial Vehicles (UAVs) are an example
of an autonomous system that has seen diverse utilization in
areas of agriculture, disaster relief, remote sensing, surveil-
lance, etc. [1]–[5]. UAVs are often deployed in uncontrolled
environments, and are hence required to adapt to dynamic
conditions in real-time withminimal sacrifice to functionality
and performance.

To meet the aforementioned requirements of autonomy,
extensive research has been carried out to develop effective
methods of system identification and adaptation. These meth-
ods are generally classified as parametric or non-parametric
depending on the control requirements and design con-
straints. Parametric means are data-driven approaches where
model parameters of a Process Under Test (PUT) are iden-
tified based on observation data. Such approaches include
prediction error methods (PEM) [6]–[8], maximum likeli-
hood (ML) methods [9], [10], least square (LS) methods [11],
frequency response identification methods [12]–[14], and
neural network-based methods [15]–[17]. Several studies in
the literature applied these techniques to UAV operation with
accurate identification results [18]–[23]. Nonetheless, these
methods require extensive data generation and accurate selec-
tion of optimizer initial conditions, which demand human
experience and cause susceptibility to data biases and overfit-
ting. Furthermore, most of thesemethods are computationally
expensive and not suitable for real-time applications; they are
instead applied offline to process an abundance of previously
collected flight or operational data [18]–[22].

On the other hand, non-parametric identification includes
methods that rely on the partial knowledge of the PUT to tune
a predefined controller structure. Such methods include, for
example, the classical Ziegler-Nicholsmethod [24], the Relay
Feedback Test (RFT) [25], and the Modified Relay Feedback
Test (MRFT) [26]. In all these methods, the knowledge of the
PUT response to a single excited frequency is sufficient to
tune controller parameters. It was shown in recent work [27]
that a near-optimal controller for quadcopter attitude dynam-
ics can be designed using MRFT based tuning rules. How-
ever, non-parametric methods in the literature are limited to
PID tuning and do not provide full insight into the system
dynamics as they cannot be used to obtain model parameters.

Recent advancements in the fields of Iterative Learn-
ing Control (ILC), Reinforcement Learning (RL) and Deep
Learning (DL), and the growth of computational capabilities
have given rise to new approaches of controller design and
tuning [28]–[34]. These approaches have introduced advan-
tages in regards to accuracy of models and controllers, adap-
tation time, and the ability to handle nonlinearities in the PUT;
with the limiting requirement of abundant observation data.
Similar to non-parametric tuning, these approaches do not
generate explicit estimates of model parameters, but rather
implicitly consider these parameters in controller design.

This paper bridges the gap between parametric and
non-parametric methods and presents a novel methodology
to infer accurate estimates of model parameters with the
prime motivation of designing high-performance controllers
online and in real-time. The novelty of the proposed method-
ology lies in utilizing self-excited oscillations (i.e. chatter-
ing) resulting from a sliding mode controller, which is the
MRFT, to reveal distinguishing information about the PUT.
The information revealed by MRFT is then fed to a DL
classifier that selects model parameters that best represent
the PUT. Fig. 1 illustrates the proposed comprehensive sys-
tem identification approach. We show that this identification
method can be performed in real-time such that a UAV adapts
to changes to its own physical dynamics during a flight
mission. The suggested online identification methodology
is safe with guaranteed stability, and results in controllers
with assessable levels of robustness and performance. The
presented approach is mainly applied to Second-Order with
Integrator Plus Time Delay (SOIPTD) linear systems, but is
also applicable to other systemmodels with an equal or lower
number of model parameters. Due to its real-time capabili-
ties, the proposed technique can handle static nonlinearities
by applying the identification process in multiple operation
modes (e.g. near ground hovering or drag dynamics caused
by large translational speeds); to obtain locally linear descrip-
tions of the system.

There are two inherent features of the proposed approach
that highlight its advantages over other existing methods.
First, the required amount of data needed for identification
is minimal as it consists of a single excited frequency of
the system. In contrast, other data-driven classical identifi-
cation methods used in the literature require extensive data
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FIGURE 1. The proposed system identification scheme: (1) The control switch starts at position (a) where MRFT is used to excite an unknown plant G(s)
with stable oscillations. (2) These oscillations are pre-processed and forwarded to a DL classifier to identify the system parameters as Ĝ(s). (3) After the
PUT is identified, a suitable controller C∗(s) can be designed and applied to the plant by shifting the control switch to position (b).

generation [6]–[10], [13], [14]. Due to the reduction in data
requirements, the proposed methodology does not require
human experience for data generation, and the model fitting
process is not prone to data bias. This makes the proposed
method precise and accurate in identifying unknown model
parameters. Other advantages of data reduction include mini-
mizing computational requirements and shortening the period
of the identification phase. In fact, we have found that the
required computational time on modern commercial proces-
sors is in the order of milliseconds; and the identification
phase lasts for a maximum of a few seconds (this depends
on the PUT dynamics, e.g. mass).

The second inherent feature of the presented identification
method is the guarantee of stability during the identification
phase. This relieves the need for hand-tuned initial stabilizing
controllers as opposed to classical identification methods,
and makes the presented method less prone to estimation
biases and non-optimality caused by the selection of initial
control parameters (i.e. initial parameters for the optimizer
decision variables). As stability is guaranteed, the PUT can
be directly started in the identification phase as demonstrated
in the results section; thus further minimizing the required
operation time to estimate model parameters. Table 1 pro-
vides a qualitative comparison between the method suggested
in this paper and other related work in literature. Addition-
ally, the Results section provides a quantitative comparison

between this paper’s method and two other identification
methods: PEM and non-parametric tuning based on MRFT.

The main contributions of this paper can be summarized
as:
• We introduce a novel approach of parametric system
identification with guaranteed stability, real-time capa-
bilities, and minimal requirements of observation data.

• We optimize the identification phase to reveal distinctive
information about the PUT by means of finding the
distinguishing phase for a set dynamic systems.

• We present a discretization technique to address system
identification as a classification problem by utilizing the
concept of controller performance deterioration.

• We devise a modified formulation of the Softmax acti-
vation function that adds a meaningful discrepancy to
the cost of misclassification, leading to faster and more
accurate training of the DL model.

The remainder of this paper is organized as follows.
The system identification problem is first formulated in
Section II. Section III describes the comprehensive identifi-
cation approach proposed in this paper. In section IV, sim-
ulation and experimental results for the suggested approach
are presented, discussed and compared against PEM based
system identification and the non-parametric tuning rules
of [27]. Finally, Section V summarizes the findings of this
paper and provides concluding remarks.
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TABLE 1. Qualitative comparison with selected recent methods from literature addressing the problem of automatic controller tuning and adaptation for
UAVs.

II. PROBLEM STATEMENT
Considering an LTI system G(s) with known model struc-
ture and unknown set of bounded model parameters
Ep ∈ (D ⊂ RQ). Let us also assume a feedback controller C(s)
that acts on G(s). Given vector X ∈ R2N that contains N uni-
formly sampled measurements of both the process variable
pv and controller output u signals. Inner system states are
considered to be unobservable. We wish to find the mapping
0 : X → D̄ where D̄ is a discretization of the subspace D.
In this work, we limit the order of the LTI system to SOIPTD,
which corresponds to multirotor attitude and altitude dynam-
ics as presented in [27]:

G(s) =
Keqe−τ s

s(Tprops+ 1)(Tbodys+ 1)
(1)

The nonlinearity of the system is mainly exhibited by the
change in the value of the parameter Tbody as a function of
velocity representing drag dynamics. The assumption that
such drag coefficient can be considered constant works well
in practice and was deliberately analyzed in [38], [39] where
drag sources caused by air inflow, blade flapping, and body
drag were investigated. Propulsion systems, consisting of
electronic speed controllers ESCs and motors, are assumed
to provide linear steady-state thrust response; and hence,
Keq can be considered constant. From bench propulsion sys-
tem tests similar to the ones performed in [40], it can be

concluded that Tprop is constant across the whole operating
range. Additionally, network communication and processing
delays are almost constant, permitting us to consider the time
delay τ as a constant. The dynamics in (1) relate motor com-
mands sent by the flight controller to the observed roll, pitch,
or altitude. The considered attitude and altitude dynamics are
subject to measurement noise ℵ and forced bias u0 caused by
external disturbances (e.g. gravity) or sensor bias.

III. METHODOLOGY
A. FINDING THE DISTINGUISHING PHASE
The identification method presented in this paper builds on
two propositions.
Proposition 1: There is a distinguishing phase ϕd at which

the sustained self-excited oscillation characteristics can be
used to identify the corresponding processes in D̄.
Proposition 2: The distinguishing phase ϕd corresponds

to the optimal tuning rules of [26]. As such, ϕd can be deter-
mined by the process of designing optimal non-parametric
tuning rules as outlined in [26], [41].

For completeness, we summarize the steps to obtain opti-
mal non-parametric tuning rules as follows [26], [27], [41]:

1) Select process model and the range of the normalized
model parameters.

2) Discretize the selected range of model parameters to a
finite set of dynamics processes.
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3) Select tuning rule specifications based on gain margin
or phase margin requirements.

4) Generate a locally optimal tuning rule for every process
in the range.

5) Apply every locally optimal tuning rule to all other
processes in the range. Note the performance deterio-
ration for every process due to the application of the
non-optimal tuning.

6) Select the tuning rule with the least deterioration in
performance as the global optimum.

In our case, the model structure is SOIPTD; therefore,
the vector Ep that contains the model parameters is defined as:

Ep =
[
Tprop Tbody τ

]T
, Ep ∈R3 (2)

and the model parameters range is selected to be[
0.015, 0.2, 0.0005

]T
≤ Ep ≤

[
0.3, 2, 0.1

]T
(3)

which includes a wide variety of multirotor UAV designs
and sizes from racing quadrotors to larger multirotor UAVs
having a takeoff weight of up to 50Kg. The selection of these
parameter ranges was based both on experimental results and
parameters from literature like the ones provided in [27],
[39], [40], [42], in addition to modeling equations like those
discussed in [27], [38], [39], [43]. The selection of parame-
ter bounds can be safely expanded to include UAV designs
beyond the specified ranges as they can be handled by the
approach presented in this section.

Using the aforementioned method to generate optimal
non-parametric tuning rules, we found ϕd to be −46.89◦.
In practice, a self-sustained oscillation with a specific phase
can be excited using MRFT. MRFT is an algorithm that can
be realized with the following equation [26]:

uM (t)

=

{
h if e(t) ≥ b1 or (e(t) > −b2 and uM (t−) = h)
−h if e(t) ≤ −b2 or (e(t) < b1 and uM (t−) = −h)

(4)

where b1 = −βemin and b2 = βemax . emax > 0 and
emin < 0 are respectively the last maximum and minimum
values of the error signal after crossing the zero level; and
uM (t−) = limε→0+uM (t − ε) is the previous control signal.
Prior to the start of MRFT the maximum and minimum error
values are set as: emax = emin = 0. β is a constant parameter
that dictates the phase of the excited oscillations as:

ϕ = arcsin (β) (5)

Using the Describing Function (DF) method, it could
be shown that the MRFT achieves oscillations at a speci-
fied phase angle by satisfying the Harmonic Balance (HB)
equation [44]:

Nd (a0)Wp(j�0) = −1 (6)

The DF of MRFT is presented in [26] as:

Nd (a0) =
4h
πa0

(
√
1− β2 − jβ) (7)

The DF method provides an approximate solution that is
valid only ifWp(s) has sufficient low pass filtering properties.
It is worth mentioning that the MRFT control signal uM (t)
has a phase lead relative to the error signal e(t) in the case
of β < 0, and lags in the case of β > 0. The MRFT DF
intersects the Nyquist plot in the second quadrant for β < 0;
while this intersection occurs in the third quadrant when
β > 0. The Relay Feedback Test (RFT) [25] could be thought
of as a special case of the MRFT algorithm where β = 0. For
our case, the value of theMRFT parameter β that corresponds
to ϕd = −46.89◦ is βd = sin(ϕd ) = −0.73.

B. DISCRETIZATION OF SYSTEM PARAMETERS’ SUBSPACE
System identification has been generally considered in the lit-
erature as a regression problem [45]–[47]. However, training
a deep learning regression model can raise several instability
and complexity concerns as suggested in [48], where a DL
network was used for age prediction. To avoid these short-
comings with DL regression, the system identification conun-
drum in this study is formulated as a classification problem
by discretizing the parameter space D into N unique sets of
system parameters D̄ = {G1,G2, . . . ,GN }. System identifi-
cation hence becomes the problem of selecting a candidate
set of process parameters Gi within D̄ that best resembles the
dynamics of the ground truth dynamic system Gact .
A trivial approach to obtain D̄ would be discretizing D

based on an equispaced distance of the model parameters Ep.
Assuming that the equi-space distance was small enough to
represent all the pivotal processes, D̄ would end up being
an over-discretized representation of D. Adjacent processes
of a given subspace of D̄ would have similar frequency
response characteristics while adjacent processes in another
subspace of D̄would have vastly different frequency response
characteristics. Thus, a trained classifier would be biased
towards the subspace where adjacent processes have similar
frequency response characteristics. Therefore, a meaningful
criterion for discretization must be developed to ensure a
balance between the distinguishability of these processes
(i.e. in terms of their frequency response characteristics) and
their accuracy in representingD. For this purpose, a joint cost
function is introduced based on the concept of controller per-
formance deterioration. To illustrate such joint cost function,
let us consider {Gi(s),Gj(s)} ∈ D̄; the joint cost associated
with applying Ci(s), which is the optimal controller of pro-
cess Gi(s), to the process Gj(s) would be given by:

Jij =
J (Ci(s),Gj(s))− J (Cj(s),Gj(s))

J (Cj(s),Gj(s))
× 100% (8)

where J is a cost function relating a controller C(s) to a
processG(s) (i.e. IAE, ISE, etc.). The self-joint cost is defined
by the case of i = j, where Jij = 0. For the case where i 6= j,
Jij > 0 by definition. It must be noted that the joint cost
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function is non-commutative, i.e. Jij 6= Jji. Therefore, J(ij) =
max{Jij, Jji} is used as the discretization criteria to provide a
performance guarantee among adjacent members of D̄. In this
paper, we have chosen ISE as a system performance index.
ISE cost function is given by:

JISE (C,G) =
1
Ts

∫ Ts

0
e(C,G)2dt (9)

where in this paper we use J := JISE for convenience.
For discretizing D, we choose a desired value of the joint

cost between adjacent processes J∗. In this paper, we use
J∗ = 10% as it provides sufficient accuracywithout requiring
excessive simulation time (simulation time have a cubical
relationship with the reciprocal of J∗). To find the pro-
cess adjacent to a known one, Gi, we use an optimizer
(Nelder-Mead simplex algorithm realized by ‘‘fminsearch’’
function in MATLABR© have been used) that takes a vector
of model parameters Epj as the set of decision variables and
uses E = (J∗ − J(ji))2 as a cost function. We have found that
discretizingD requires excessive simulation time (might take
days to several weeks depending on the selected parameters
range of D). For that we propose reducing the dimensions of
the parameters space by transforming the describing subspace
D from rectangular to spherical coordinates. The transforma-
tion is given by:

r0 =
√
T 2
prop + T

2
body + τ

2

θ = arctan (
Tbody
Tprop

)

φ = arccos (
τ

r0
) (10)

It is worth noting that the parameter r in (10) represents
time scaling of process parameters Ep as in s′ = rs. This allows
us to introduce two properties of the spherical representation
that will make the discretization process more efficient.
Property 1: For subsequent time scaling of a system Gi(s)

along the radial direction Gj(αs), Gk (α2s), the joint cost
between successive scaled systems remain constant as in:
Jij = Jjk , Jji = Jkj for α ∈ R>0.
Property 2: Considering two radially scaled systems:

Gi(s) and Gj(α1 s) with a joint cost Jij, and another pair of
radially scaled systemsGk (s) andGl(α2 s) with the same joint
cost Jkl = Jij; then J∗ = J(ik) = J(jl) for α1, α2 ∈ R>0.
Property 1 allows us to discretize a subsurface of a sphere

S that we choose its radius to satisfy r0 = ||Epmin||, where
Epmin corresponds to the minimum model parameters set in D.
This effectively reduces the discretization problem by one
dimension. Fig. 2 provides a three-dimensional illustration
of D and S. To discretize S we set J∗ = 10% and we
proceed with the discretization by varying the values of φ
and θ . To prevent excessive discretization and to increase
robustness of controllers against varying model parameters
and linearization assumptions, we impose phase margin con-
straints on controllers used to find the joint cost function J(ij).
The phase margin constraint can be imposed using a set of

FIGURE 2. Showing a representation of D and S with discretized
processes in S̄ shown in green and discretized processes in D̄ shown in
red. The discretized processes in D̄ are denser at parts of D where the
ratio of τ

Tprop
and τ

Tbody
are highest.

three equations. The first equation relates PID parameters
with the PUT amplitude and frequency responses when a
steady-state oscillation is excited at a certain phase [41]:

Kc = c1
4h
πa0

, Ti = c2
2π
�0
, Td = c3

2π
�0

(11)

c1, c2 and c3 are related to the excitation phase ϕ character-
ized by the MRFT parameter β through the two following
equations [41]:

β = sin(φm + arctan(
1

2πc2
− 2πc3)) (12)

and:

c1

√
1+ (2πc3 −

1
2πc2

)2 = 1 (13)

In this work, we choose φm = 20◦. A higher imposed
value of the phase margin constraint would result in a
lower number of discretized processes. A modified version
of Nelder-Mead simplex algorithm that accepts constraints
on optimization decision variables is used to realize (12)
and (13). Then we proceed by finding S̄ which is the set of
the discretized processes in S. Once we have S̄, we find the
scaling parameter α for every process in S̄ as proposed in
property 1. Fig 3 illustrates these steps with the properties 1
and 2. Property 2 guarantees that all adjacent systems have
a joint cost within J∗. Fig 2 shows the set of discretized
processes.

For the parameters’ range presented in (3), we found the
size of D̄ to be 208 processes. The discretized processes are
denser at the parts of D where the ratio between the time
delay τ and the other process time constants is the highest.
Therefore, the identification and control of small UAVs with
sensors and actuators that have high delays is found to be
more challenging.
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FIGURE 3. A projected side view showing parameters space D and the
surface S with radius r0. J∗ is achieved by using the time scales
α1, α2, α3. Note that {G1(s),G4(s),G8(s)} ∈ S̄ and
{G2(s),G5(s),G6(s),G9(s)} ∈ D̄. J∗ = J45 = J56 illustrates property 1.
Property 2 is illustrated by J∗ = J14 = J35. G2(s) and G9(s) represent a
scaled version of processes G1(s) and G8(s) respectively in D̄.

C. DEEP LEARNING MODEL DEVELOPMENT
AND TRAINING
In this section, the process of developing and training a
deep learning model for system parameter identification is
discussed. The objective of the DL model in this study is to
find the mapping 0 : X → D̄ as illustrated in Section II.
The input X to the DL classifier is a uniformly time sampled
vector concatenating the controller and plant response, while
the output of the DL network is one of N sets of process
parameters in D̄.
Training data was generated based on members of D̄. The

MRFT response of each system within D̄was simulated mul-
tiple times according to the process diagram shown in Fig. 1.
Measurement noise power ℵ was randomly varied between
different simulations to add a regularization effect and pre-
vent over-fitting [49]. To further prompt robustness and gen-
eralization against varied testing conditions, simulations were
carried out with varied values of forced input bias u0, which
introduces asymmetry to the MRFT controller output. The
values of u0 were limited to half the relay amplitude h of
the MRFT controller as a reasonable bias magnitude in prac-
tical settings. Thirty simulations were performed for each

candidate system in D̄ to produce a training set of size 6240.
Five additional simulations per system were carried out to
generate 1040 samples to be used as a verification set. Both
the training and the verification datasets incorporate the full
range of process parameters in (3) and take into consideration
practical conditions of bias and noise. As such, these datasets
accurately represent the behavior of a wide variety of UAV
systems in different experimental configurations.

The pre-processing steps undertaken to prepare the DL
input data can be summarized as: sampling adjustment,
cropping, zero-padding, amplitude normalization, and con-
catenation. Fig. 4 illustrates these pre-processing steps. The
sampling period was fixed to be 1ms. The size of the
input vector was set to be X ∈ R2×2260 to accommo-
date the response of the slowest system in D̄ (i.e. a period
of 2.26s).

Fig. 5 shows the structure of the developed deep learning
model. The DL network consists of two hidden layers of
size 3000 and 1000 respectively. This structure was chosen
upon testing with several DL models of different depth and
width, up to four layers and 10000 neurons, as it showed
the best results with suitable computational performance on a
single-core processor. Convolutional Neural Networks were
also tested with no noticeable performance improvements.
Rectified Linear Units (ReLU) were utilized as the activation
function for both hidden layers due to its simplicity, reliabil-
ity, and to avoid gradient vanishing [50]. Dropout is used after
each layer for its regularization effect to avoid overfitting and
prompt a noise rejection behavior [51]. Batch normalization
is applied to the outputs of the hidden layers to accelerate
training and to add a slight regularization effect [52]. The
output layer consists of 208 neurons, one for each system
in D̄.
The Softmax activation function and the Cross-entropy

loss function are among the most utilized combinations for
training deep learning networks. For the case of system
identification, a conventional application of this combination
lacks in the sense that the cost of incorrect classifications
is identical regardless of the corresponding error in param-
eter space. To undermine this shortcoming, we introduce a
modified formulation of the Softmax function. The modified
formulation utilizes the joint cost function presented in (8) to
add a meaningful discrepancy to the cost of misclassification.

FIGURE 4. Pre-processing the DL classifier input vector: (a) The system’s MRFT response is obtained and the sampling time is adjusted to be 1ms. (b) A
single cycle of the steady-state oscillation is selected, zero-padding is applied elsewhere. (c) The response is zero-center and scaled to an amplitude of 1.
(d) PV and u are concatenated to form a 1D vector.
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FIGURE 5. DL model architecture. The input vector length is 4520. Layer 1
contains 3000 neurons and Layer 2 contains 1000 neurons.

For the ith logit ai in the output layer corresponding to a
processGi, the modified Softmax probability pi is introduced
as:

pi =
eγiT ·ai∑N
j=1 e

γjT ·aj
(14)

where T is the class corresponding to the ground truth sys-
tem GT , and γiT = 1+ JiT is a scaling factor.

As a loss function for training the DL network, the modi-
fied formulation in (14) is utilized alognside the cross-entropy
function L = −

∑N
i=1 yi log (pi), where y is a one-hot

encoded vector that indicates the ground truth class T . The
partial derivative of L with respect to ai is computed as:

∂L
∂ai
= γiT × (pi − yi) (15)

For an exact derivation of (15), readers can refer to
Appendix A.

The DL network was trained using a Stochastic Gradient
Descent approach with data shuffling for faster and more
accurate convergence [53]. The ADAM optimization algo-
rithm was utilized to further accelerate training and add
robustness against noisy gradients as it was shown to out-
perform other adaptive learning rate techniques in [53], [54].
An automated search was conducted to find the most
appropriate set of learning hyper-parameters that performed
best on a held-out validation set. The final selection of
hyper-parameters is shown in Table 2.

TABLE 2. Hyper-parameters for training the DL neural network.

TABLE 3. DL verification set results on simulation data.

Table 3 demonstrates the classifier’s performance on the
verification set utilizing both the modified and conventional
Softmax formulations. Although the DL network was used as
a classifier, classification accuracy is not a suitable measure
of the performance as it does not reflect the error between the
predicted systemGp andGT . As such, controller performance
deterioration JpT is considered as a better and impartial eval-
uation criterion, especially as it was the basis for discretiz-
ing the system identification problem. The phase margin φm
resulting from applying an optimal PD controller designed for
Gp on the ground truth systemGT is also provided to evaluate
the robustness of the proposed identificationmethodology for
controller design purposes.

Results show that although classification accuracy is rela-
tively low, the average joint cost JpT is well below J∗ = 10%.
The modified Softmax formulation results in a generally
lower JpT than the conventional Softmax function, particu-
larly when comparing themaximum cost of misclassification.
The modified formulation also provides a significantly larger
margin for φm. These results highlight a promising perfor-
mance of the developed DL scheme in system identification
applications under varied measurement noise ℵ and input
bias u0. A single inference run of the DL model on a single
core of an i5-6300U processor requires 5 ms, which reflects
the suitability of the developed deep learning framework for
real-time identification applications.

D. IDENTIFICATION PROCEDURE
Once the distinguishing phase has been identified and the
DL neural network has been trained, the real-time identifica-
tion procedure shown in Fig. 1 can be applied to determine
the model parameters of any system in D. First, MRFT is
performed with βd obtained from section III-A to excite the
system with stable oscillations. System stability during the
MRFT phase is guaranteed by the Loeb criterion [26]. Upon
reaching steady-state, a single cycle of the system response
and controller action is pre-processed as illustrated in Fig. 4.
The trained DL classifier maps the pre-processed response to
a set of model parameters Ep that better describes the PUT.

The identified process parameters Ep can subsequently be
utilized to infer optimal controller parameters. To ensure
that a controller is obtained in real-time, PD controllers are
initially optimized offline for each system in D̄ to form a
lookup table of optimal controller parameters. During opera-
tion, the process parameters are identified in real-time and an
optimal controller is selected from the pre-designed lookup-
table. It is important to note that the proposed methodology
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is not limited to PD controllers, but they are rather used as an
example. Any other suitable controller design or structure can
be implemented and optimized based on the identified model
parameters.

IV. RESULTS
This section evaluates the effectiveness of the compre-
hensive system identification approach proposed in this
paper. The testing approach follows the procedure explained
in section III-D. Performance evaluation was performed
using simulation data in addition to experimental tests on
a UAV. Simulation results are compared against PEM as
a well-established system identification method and the
non-parametric tuning rules as an optimal controller design
criteria.

A. SIMULATION RESULTS
Fifty different system parameter combinations were ran-
domly sampled from the parameter space D to form a testing
set D̄test . Unlike the DL verification set in III-C, these systems
are not members of the discretized parameter space D̄ and are
thus better suited to evaluate the generalization performance
of the inclusive system identification solution. Testing data is
generated by simulating the MRFT response for each system
in D̄test under varied u0 and ℵ. Data is then pre-processed
and passed to the DL classifier to predict the parameters of a
system Gp.
The controller performance deterioration JpT is utilized

to evaluate the accuracy of identification. The mean and
maximum deterioration values for the testing set are shown
in Table 4 using both the conventional Softmax function
and the modified formulation in (14). Both the average
and maximum JpT are within J∗ = 10%, which validates
the proposed means of system identification. The modified
Softmax formulation outperforms the conventional one as
it results in lower controller performance deterioration and
provides a larger margin for φm. These results demonstrate
the generalization capabilities of the system identification DL
framework to accommodate the full parameter spaceD under
different conditions of system bias and measurement noise.

TABLE 4. DL testing set Dtest results on simulation data.

B. COMPARISON WITH THE PREDICTION
ERROR METHOD
The system identification performance of the proposed
method was benchmarked against PEM using the same test-
ing set D̄test . PEM was implemented using Matlab’s Sys-
tem Identification Toolbox [55] with Sequential Quadratic

Programming as the search algorithm. To generate input/
output estimation data for PEM, the closed-loop response of
each system in D̄test was simulated under varied u0 and ℵ.
MRFT was chosen as the closed-loop controller is due to its
guarantee of stability for all systems in D. Accordingly, two
different sets of estimation data were simulated for each PUT
in order to assess PEM’s performance against the amount of
observation data. The first set (Estimation Set-I) consists of
a single cycle of the MRFT response with the distinguishing
phase βd = −0.73 of section III-A. Fig. 6-a shows a sample
PEM estimation data of the first set, which is on par with
the requirements of the DL approach proposed in this paper.
The second set (Estimation Set-II) consists of 20 seconds of
the simulated MRFT response with the β parameter continu-
ously swept from βmax = −0.1 to βmin = −0.9; resulting in
oscillations of different magnitude and frequency as shown in
Fig. 6-b. Finally, the most sensitive system in D for parame-
ters variation which is Ginitial =: {Tprop = 0.015,Tbody =
0.2, τ = 0.1} was selected as the initial guess for PEM
predictions unless explicitly stated otherwise.

FIGURE 6. Sample of PEM input/output estimation data (a) Estimation
Set-I with a single cycle of MRFT response (b) Estimation Set-II with
multiple cycles of MRFT response with varied β.

Table 5 compares PEM identification results against our
DL approach in terms of controller performance deterioration
JpT and computation time per inference. Unstable predictions
are defined as those that result in JpT which grows to infinity
with time (note that a condition to handle steady-state errors
is used). PEM results on Estimation Set-I show that unlike
the deep learning approach, PEM fails to generate reliable
predictions of system parameters from just a single cycle of
the MRFT response. Increasing the amount of observation
data enhances the prediction accuracy of PEM as indicated
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TABLE 5. Comparison of system identification performance on
simulation data for testing set D̄test .

by results on Estimation Set-II, but it requires significantly
larger processing time and still does not satisfy the maximum
deterioration target of J∗ = 10%.
By examining the cases where PEM fails to produce accu-

rate estimations, two main factors affecting PEM perfor-
mance were identified. The first of which is PEM’s require-
ment of a good initial guess. Table 6 shows PEM predictions
for a system GT =: {Tprop = 0.02,Tbody = 0.3, τ = 0.001}
with different initial guesses. PEM predictions differ signifi-
cantly with the initial guess and do not consistently converge
to a suitable solution. By contrast, our proposed approach
does not require an initial guess or prior knowledge of the
PUT to generate appropriate system identification results.

TABLE 6. PEM system identification results with different initial guesses
for a simulated process GT =: {Tprop = 0.02, Tbody = 0.3, τ = 0.001}.

The second factor disturbing PEM predictions is the input
bias u0. Table 7 compares identification results for a system
GT =: {Tprop = 0.02,Tbody = 0.3, τ = 0.001} under
different values of input bias using PEM and the suggested
deep learning method. Referring to the results in Table 7,
PEM predictions worsen as input bias get larger; by contrast,
no significant differences are observed using our deep learn-
ing system identification method.

C. COMPARISON WITH NON-PARAMETRIC
TUNING RULES
In order to assess the significance of the deep learning sys-
tem identification solution for controller synthesis, it was

TABLE 7. Comparison of system identification performance on
simulation data for process GT =: {Tprop = 0.02, Tbody = 0.3, τ = 0.001}
with varied input bias.

benchmarked against the non-parametric tuning rules of [27]
as it has comparable data and computational time require-
ments. These tuning rules were used to infer optimal PD
controllers for each system in D̄test . Using these rules,
an average performance deterioration of 1.67% and a max-
imum of 13.29% were observed on the testing set. By com-
parison, the approach presented in this paper reduces these
deterioration values to a third as indicated in Table 4. These
performance improvements would be difficult to observe
in practice as both approaches result in a low performance
deterioration value.

The main advantage the work presented in this paper holds
over the non-parametric tuning rules lies in its scalability to
various controller structures and system models. The pro-
posed approach identifies the dynamic model parameters,
which enables the design of a wide set of controllers fitting to
specific practical and performance requirements; as opposed
to the PID structure limitation of the tuning rules. Accurate
knowledge of the model parameters can further be utilized
in designing other sub-systems such as: trajectory gener-
ation, state estimation, or multi-loop cascaded controllers.
The presented solution can be extended to any parametric
system identification or controller tuning problem with min-
imal modifications to the approach given the constraint on
the number of unknown parameters. In contrast, adapting
the tuning rules for different model structures would require
extensive theoretical adjustments and analysis.

D. EXPERIMENTAL RESULTS
The approach presented in this paper was implemented to
independently identify the altitude and attitude dynamics of
a UAV. We utilized the Quanser QDrone [56] as the testing
platform for our experiments. The physical parameters and
specifications of the Qdrone are provided in Table 8. The
onboard IMU data was fused with Optitrack’s Prime 17W
motion capture system [57] to estimate the pose of the drone.
The procedure summarized in section III-D is applied to a
single control loop of the QDrone to identify its underlying
process parameters and optimal PD controller.
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TABLE 8. QDrone specifications.

One advantage of our approach is the guarantee of stability
during the identification phase by the MRFT controller [26].
Therefore, the identification procedure can be safely carried
out without the need for prior knowledge of the underlying
system dynamics. To illustrate this feature, identification of
the altitude dynamics was done with the UAV starting from
the ground with no PD controller. A generalized controller
consisting of the summation of an MRFT controller and an
integrator was used to elevate the UAV and excite stable oscil-
lations around a predefined set-point. The objective of the
integrator action is to counter the gravitational force. The fol-
lowing equation illustrates the quadrotor takeoff controller:

ui(t) =

{
ki
∫
(zref − z)dt if z < zref or ż < żmax

ui(t−) otherwise
(16)

where ki is a constant gain, z and ż are the altitude and altitude
change rate respectively, zref is the set point for altitude,
żmax is the maximum allowed altitude rate, and ui(t−) is the
previous controller output.

FIGURE 7. UAV experimental results for the altitude control loop. In the
takeoff phase the algorithm presented in (16) was used. Note that MRFT
takes a few oscillations to reach steady-state. A single oscillation at
steady-state is selected as the input to the trained DL classifier.

Once a steady-state oscillation is acquired, the identifica-
tion scheme takes place using the pre-trained DL classifier.
Based on the identified process parameters, an optimal
PD controller is inferred and applied to the plant. Fig. 7
shows the altitude and the controller action during the
end-to-end identification and control process. The proposed
take-off method was capable of stably lifting the UAV while
simultaneously exciting oscillations. The DL network then
identified the process parameters as Gh =: {Tprop =
0.0321,Tbody = 1.6886, τ = 0.0237}. Accordingly, the ISE

optimal controller parameters were selected as C∗h =:

{Kp = 59.0220,Kd = 9.0356}. The controlled system
response demonstrates a stable and smooth performance.
In the absence of a ground truth system, this favorable con-
troller performance indicates the effectiveness of the pre-
sented identification technique in targeting realistic control
applications.

The identification experiment for the altitude dynam-
ics was repeated with a payload of 400g attached to
the drone; which corresponds to a 30% increase in the
drone’s mass. The optimal PD controller parameters identi-
fied under the increase in mass were {Kp = 69.9732,Kd =
11.0002}, which shows reasonable inflation over the nominal
parameters in C∗h .
To assess the precision of the proposed identification

scheme, the DL framework was tested with multiple cycles
of the MRFT response as indicated in Fig. 8. Each cycle
serves as an independent input to the DL model, which
predicts system parameters accordingly. Table 9 shows the
cross-performance deterioration matrix among the multiple
identified systems frommultiple steady-state oscillations cor-
responding to a single MRFT run. The maximum joint cost
observed was 1.97% despite noticeable noise and variations
among subsequent cycles of the response, which illustrates
the precision and noise rejection capability of the trained DL
classifier.

FIGURE 8. Multiple cycles of the experimental MRFT response for the
UAV height control loop.

TABLE 9. Cross performance deterioration matrix showing controller
performance deterioration Jij for DL system identification of different
cycles of the experimental MRFT response in Fig. 8.
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FIGURE 9. UAV experimental results for the roll control loop: (a) Without bias compensation for the outer-loop, inherent system biases cause a drift in
the lateral position of the drone. (b) With bias compensation, lateral drift is minimized. Proper system and controller parameters for the roll dynamics
were identified in both scenarios.

The identification process was further applied to the roll
dynamics of the QDrone. The closed-loop system starts with
a sub-optimal stabilizing controller C(s) that enables that
UAV to safely take-off; the system identification procedure
is then applied and an optimal controller C∗(s) is inferred
accordingly. It must be noted that the outer-loop position con-
troller is disabled during the identification phase to maintain
a constant reference value for the MRFT controller. As a
result, inherent system biases can cause a lateral drift in the
drone’s position. To undermine the translational drift, a bias
compensation technique was implemented where the output
of the roll channel’s sub-optimal controller C(s) is filtered
and stored prior to initiating the identification procedure.
The filtered output is then used to offset the MRFT controller
during the system identification process.

Fig. 9 shows the results of the roll channel identification
experiments during the subsequent identification and control
phases with and without compensating for biases. When
applying the bias compensation technique, the DL classi-
fier identified the process parameters as Gr =: {Tprop =
0.02,Tbody = 1.6889, τ = 0.0121}, and the correspond-
ing optimal PD controller parameters were C∗r =: {Kp =
1.1000,Kd = 0.0985}. The PD control stage shows a

positive response of the attitude dynamics to the designed
controller and no substantial drift in the drone’s position
was observed. For the experiment where bias is not compen-
sated for, the identified optimal controller parameters were
C∗r− =: {Kp = 1.1082,Kd = 0.1013}. C∗r− is almost
identical to C∗r , and would cause a practically negligible
performance deterioration of less than 0.2% when applied
to Gr . This demonstrates the robustness of the developed
identification framework under different testing conditions,
which can widen its scope of application to a broad range of
practical control problems.

E. SUPPLEMENTARY MATERIAL
For better visualization of the experimental results, readers
are encouraged to refer to the supplemental video in [58],
which better highlights the performance of the proposed
identification and control framework when applied to alti-
tude and attitude loops of a quadrotor UAV. In addition to
showing the capability of devising high-performance con-
trollers in real-time, the video demonstrates the robustness
of these controllers to several artificial disturbances applied
during operation time. These disturbances mimic practical
conditions a UAV might encounter during a mission flight;
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and include weight changes, external nudges, and induced
wind speeds up to 5 m/s. The UAV sustains stability and
performance despite the extreme conditions; which highlights
the robust capabilities of the presented methodology and its
applicability to practical identification and control problems.

V. CONCLUSION
This paper introduced a novel approach for linear systems
identification of a degree up to SOIPTD. The proposed
method combines MRFT and DL to obtain a distinctive
frequency response from an unknown plant, and map this
response to a set of process parameters. The design of the
identification procedure is presented as finding the distin-
guishing phase for a family of processes with the same
model structure. System identification is then approached as
a classification problem by using the principle of controller
performance deterioration. Subsequently, a DL classifier is
constructed and trained on noisy simulated MRFT responses.
The end-to-end identification process takes place online
requiring few seconds of observation data and microsecond
level inference.

The suggested approach was verified through simulation
and experimentation. Experiments were carried out to iden-
tify the altitude and attitude dynamics of a UAV. Results show
the effectiveness of the presented techniques by demonstrat-
ing stability in the adaptation phase, accuracy of identifica-
tion, and real-time computation capabilities. The proposed
method was bench-marked against PEM and the optimal
tuning rules; and exhibited advantages in accuracy, robust-
ness to input biases, less observation data requirements, and
faster inference. All of which makes the presented approach
applicable to a wide set of practical control problems.

For future work, we aim to evaluate the proposed identi-
fication scheme for higher-order systems by extending the
techniques of finding the distinguishing phase and parameter
space discretization to higher dimensions.

APPENDIX A
DERIVATIVE OF THE MODIFIED SOFTMAX FUNCTION
WITH THE CROSS-ENTROPY LOSS FUNCTION
The derivative of the Softmax probability pi from (14) with
respect to the k th logit can be obtained using the quotient rule:

∂pi
∂ak
=

∂
∂ak

(eγiT ·ai ) ·
∑N

j=1 e
γjT ·aj− ∂

∂ak
(
∑N

j=1 e
γjT ·aj ) · eγiT ·ai

(
∑N

j=1 e
γjT ·aj )2

=

∂
∂ak

(eγiT ·ai )·
∑N

j=1 e
γjT ·aj−γkT eγkT ·ak ·eγiT ·ai

(
∑N

j=1 e
γjT ·aj )2

(17)

In the case i = k:

∂pi
∂ak
=
∂pk
∂ak

=
γkT eγkT ·ak ·

∑N
j=1 e

γjT ·aj − γkT eγkT ·ak · eγkT ·ak

(
∑N

j=1 e
γjT ·aj )2

= γkT
eγkT ·ak∑N
j=1 e

γjT ·aj
·

∑N
j=1 e

γjT ·aj − eγkT ·ak∑N
j=1 e

γjT ·aj

= γkT pk (1− pk ) (18)

Alternatively, for i 6= k , ∂
∂ak

(eγiT ·ai ) = 0. (17) hence
simplifies as:

∂pi
∂ak
=

0− γkT eγkT ·ak · eγiT ·ai

(
∑N

j=1 e
γjT ·aj )2

= γkT
−eγkT ·ak∑N
j=1 e

γjT ·aj
·

eγiT ·ai∑N
j=1 e

γjT ·aj
=−γkT ·pk ·pi (19)

Therefore, the derivative of the modified Softmax
formulation is:

∂pi
∂ak
=

{
−γkT · pk (1− pk ) if i = k
−γkT pkpi if i 6= k

(20)

The cross-entropy function L = −
∑N

i=1 yi log(pi) has the
following derivative with respect to the k th logit:

∂L
∂ak
= −

N∑
i=1

yi
1
pi

∂pi
∂ak

(21)

where y is a One-Hot encoded vector that points out the
ground truth class T .
By plugging ∂pi

∂ak
from (20) to (21), the backpropagation

term ∂L
∂ak

becomes:

∂L
∂ak
= −ykγkT (1− pk )+

∑
i6=k

yi(γkT · pk )

= γkT [−yk + ykpk +
∑
i6=k

yipk ]

= γkT [−yk + pk (yk +
∑
i6=k

yi)] (22)

As y is a one-hot encoded vector, yk +
∑

i6=k yi = 1. The
backpropogation term hence becomes:

∂L
∂ak
= γkT (yk − pk ) (23)
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