18 research outputs found

    Nasal Host Response-Based Screening for Undiagnosed Respiratory Viruses: A Pathogen Surveillance and Detection Study

    Get PDF
    BACKGROUND: Symptomatic patients who test negative for common viruses are an important possible source of unrecognised or emerging pathogens, but metagenomic sequencing of all samples is inefficient because of the low likelihood of finding a pathogen in any given sample. We aimed to determine whether nasopharyngeal CXCL10 screening could be used as a strategy to enrich for samples containing undiagnosed viruses. METHODS: In this pathogen surveillance and detection study, we measured CXCL10 concentrations from nasopharyngeal swabs from patients in the Yale New Haven health-care system, which had been tested at the Yale New Haven Hospital Clinical Virology Laboratory (New Haven, CT, USA). Patients who tested negative for a panel of respiratory viruses using multiplex PCR during Jan 23-29, 2017, or March 3-14, 2020, were included. We performed host and pathogen RNA sequencing (RNA-Seq) and analysis for viral reads on samples with CXCL10 higher than 1 ng/mL or CXCL10 testing and quantitative RT-PCR (RT-qPCR) for SARS-CoV-2. We used RNA-Seq and cytokine profiling to compare the host response to infection in samples that were virus positive (rhinovirus, seasonal coronavirus CoV-NL63, or SARS-CoV-2) and virus negative (controls). FINDINGS: During Jan 23-29, 2017, 359 samples were tested for ten viruses on the multiplex PCR respiratory virus panel (RVP). 251 (70%) were RVP negative. 60 (24%) of 251 samples had CXCL10 higher than 150 pg/mL and were identified for further analysis. 28 (47%) of 60 CXCL10-high samples were positive for seasonal coronaviruses. 223 (89%) of 251 samples were PCR negative for 15 viruses and, of these, CXCL10-based screening identified 32 (13%) samples for further analysis. Of these 32 samples, eight (25%) with CXCL10 concentrations higher than 1 ng/mL and sufficient RNA were selected for RNA-Seq. Microbial RNA analysis showed the presence of influenza C virus in one sample and revealed RNA reads from bacterial pathobionts in four (50%) of eight samples. Between March 3 and March 14, 2020, 375 (59%) of 641 samples tested negative for 15 viruses on the RVP. 32 (9%) of 375 samples had CXCL10 concentrations ranging from 100 pg/mL to 1000 pg/mL and four of those were positive for SARS-CoV-2. CXCL10 elevation was statistically significant, and a distinguishing feature was found in 28 (8%) of 375 SARS-CoV-2-negative samples versus all four SARS-CoV-2-positive samples (p=4·4 × 10 INTERPRETATION: These results confirm CXCL10 as a robust nasopharyngeal biomarker of viral respiratory infection and support host response-based screening followed by metagenomic sequencing of CXCL10-high samples as a practical approach to incorporate clinical samples into pathogen discovery and surveillance efforts. FUNDING: National Institutes of Health, the Hartwell Foundation, the Gruber Foundation, Fast Grants for COVID-19 research from the Mercatus Center, and the Huffman Family Donor Advised Fund

    PLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection

    Get PDF
    Understanding protective immunity to COVID-19 facilitates preparedness for future pandemics and combats new SARS-CoV-2 variants emerging in the human population. Neutralizing antibodies have been widely studied; however, on the basis of large-scale exome sequencing of protected versus severely ill patients with COVID-19, local cell-autonomous defence is also crucial1,2,3,4. Here we identify phospholipid scramblase 1 (PLSCR1) as a potent cell-autonomous restriction factor against live SARS-CoV-2 infection in parallel genome-wide CRISPR–Cas9 screens of human lung epithelia and hepatocytes before and after stimulation with interferon-γ (IFNγ). IFNγ-induced PLSCR1 not only restricted SARS-CoV-2 USA-WA1/2020, but was also effective against the Delta B.1.617.2 and Omicron BA.1 lineages. Its robust activity extended to other highly pathogenic coronaviruses, was functionally conserved in bats and mice, and interfered with the uptake of SARS-CoV-2 in both the endocytic and the TMPRSS2-dependent fusion routes. Whole-cell 4Pi single-molecule switching nanoscopy together with bipartite nano-reporter assays found that PLSCR1 directly targeted SARS-CoV-2-containing vesicles to prevent spike-mediated fusion and viral escape. A PLSCR1 C-terminal β-barrel domain—but not lipid scramblase activity—was essential for this fusogenic blockade. Our mechanistic studies, together with reports that COVID-associated PLSCR1 mutations are found in some susceptible people3,4, identify an anti-coronavirus protein that interferes at a late entry step before viral RNA is released into the host-cell cytosol

    Immune Response to Human Metapneumovirus Infection: What We Have Learned from the Mouse Model

    No full text
    Human Metapneumovirus (hMPV) is a leading respiratory viral pathogen associated with bronchiolitis, pneumonia, and asthma exacerbation in young children, the elderly and immunocompromised individuals. The development of a potential vaccine against hMPV requires detailed understanding of the host immune system, which plays a significant role in hMPV pathogenesis, susceptibility and vaccine efficacy. As a result, animal models have been developed to better understand the mechanisms by which hMPV causes disease. Several animal models have been evaluated and established so far to study the host immune responses and pathophysiology of hMPV infection. However, inbred laboratory mouse strains have been one of the most used animal species for experimental modeling and therefore used for the studies of immunity and immunopathogenesis to hMPV. This review summarizes the contributions of the mouse model to our understanding of the immune response against hMPV infection

    Human Metapneumovirus Attachment Protein Contributes to Neutrophil Recruitment into the Airways of Infected Mice

    No full text
    Human Metapneumovirus (HMPV) is a leading respiratory pathogen that causes lower respiratory tract infections worldwide. Acute HMPV infection induces an exacerbated inflammatory neutrophilic response leading to bronchiolitis and pneumonia. However, the mechanism by which the virus regulates neutrophil infiltration into the airways still remains unexplored. In this work, we used an experimental mouse model of HMPV infection to demonstrate that the attachment (G) protein of HMPV contributes to the recruitment of neutrophils into the airways and modulate the production of neutrophil chemoattractants and Type I IFN responses, specifically IFN-α. These findings provide the first evidence that the HMPV G protein contributes to the in vivo neutrophilic response to HMPV infection and furthers our understanding on virus induced inflammatory responses in the airways

    Neutrophils regulate the lung inflammatory response via γδ T cell infiltration in an experimental mouse model of human metapneumovirus infection

    No full text
    Neutrophils are the most abundant leukocytes in human circulation. They are the first immune cell population recruited to the sites of infection. However, the role of neutrophils to regulate host immune responses during respiratory viral infections is largely unknown. To elucidate the role of neutrophils in respiratory antiviral defense, we used an experimental mouse model of human metapneumovirus (HMPV) infection. HMPV, a member of the family, is a leading respiratory pathogen causing severe symptoms, such as bronchiolitis and pneumonia, in young, elderly, and immunocompromised patients. We demonstrate that neutrophils are the predominant population of immune cells recruited into the lungs after HMPV infection. This led us to hypothesize that neutrophils represent a key player of the immune response during HMPV infection, thereby regulating HMPV-induced lung pathogenesis. Specific depletion of neutrophils in vivo using a mAb and simultaneous infection with HMPV exhibited higher levels of inflammatory cytokines, pulmonary inflammation, and severe clinical disease compared with HMPV-infected, competent mice. Interestingly, the lack of neutrophils altered γδ T cell accumulation in the lung. The absence of γδ T cells during HMPV infection led to reduced pulmonary inflammation. These novel findings demonstrate that neutrophils play a critical role in controlling HMPV-induced inflammatory responses by regulating γδ T cell infiltration to the site of infection

    Human Metapneumovirus Induces Mucin 19 Which Contributes to Viral Pathogenesis

    No full text
    Human Metapneumovirus (HMPV) remains one of the most common viral infections causing acute respiratory tract infections, especially in young children, elderly, and immunocompromised populations. Clinical symptoms can range from mild respiratory symptoms to severe bronchiolitis and pneumonia. The production of mucus is a common feature during HMPV infection, but its contribution to HMPV-induced pathogenesis and immune response is largely unknown. Mucins are a major component of mucus and they could have an impact on how the host responds to infections. Using an in vitro system and a mouse model of infection, we identified that Mucin 19 is predominantly expressed in the respiratory tract upon HMPV infection. Moreover, the lack of Muc19 led to an improved disease, lower lung viral titers and a decrease in the number of CD4+ T cells. These data indicate that mucin 19 contributes to the activation of the immune response to HMPV and to HMPV-induced pathogenesis
    corecore