32 research outputs found

    Persistent Zika Virus Detection in Semen in a Traveler Returning to the United Kingdom from Brazil, 2016.

    Get PDF
    Zika virus is normally transmitted by mosquitos, but cases of sexual transmission have been reported. We describe a patient with symptomatic Zika virus infection in whom the virus was detected in semen for 92 days. Our findings support recommendations for 6 months of barrier contraceptive use after symptomatic Zika virus infection

    Cutaneous Larva Migrans Presenting with Folliculitis.

    Get PDF
    No abstract available

    Identification of Antigens Specific to Non-Tuberculous Mycobacteria: The Mce Family of Proteins as a Target of T Cell Immune Responses

    Get PDF
    The lack of an effective TB vaccine hinders current efforts in combating the TB pandemic. One theory as to why BCG is less protective in tropical countries is that exposure to non-tuberculous mycobacteria (NTM) reduces BCG efficacy. There are currently several new TB vaccines in clinical trials, and NTM exposure may also be relevant in this context. NTM exposure cannot be accurately evaluated in the absence of specific antigens; those which are known to be present in NTM and absent from M. tuberculosis and BCG. We therefore used a bioinformatic pipeline to define proteins which are present in common NTM and absent from the M. tuberculosis complex, using protein BLAST, TBLASTN and a short sequence protein BLAST to ensure the specificity of this process. We then assessed immune responses to these proteins, in healthy South Africans and in patients from the United Kingdom and United States with documented exposure to NTM. Low level responses were detected to a cluster of proteins from the mammalian cell entry family, and to a cluster of hypothetical proteins, using ex vivo ELISpot and a 6 day proliferation assay. These early findings may provide a basis for characterising exposure to NTM at a population level, which has applications in the field of TB vaccine design as well as in the development of diagnostic tests

    Diagnosing and treating leprosy in a non-endemic setting in a national centre, London, United Kingdom 1995-2018

    Get PDF
    Background Leprosy is rare in the United Kingdom (UK), but migration from endemic countries results in new cases being diagnosed each year. We documented the clinical presentation of leprosy in a non-endemic setting. Methods Demographic and clinical data on all new cases of leprosy managed in the Leprosy Clinic at the Hospital for Tropical Diseases, London between 1995 and 2018 were analysed. Results 157 individuals with a median age of 34 (range 13-85) years were included. 67.5% were male. Patients came from 34 different countries and most contracted leprosy before migrating to the UK. Eighty-two (51.6%) acquired the infection in India, Sri Lanka, Bangladesh, Nepal and Pakistan. 30 patients (19.1%) acquired leprosy in Africa, including 11 from Nigeria. Seven patients were born in Europe; three acquired their leprosy infection in Africa, three in South East Asia, and one in Europe. The mean interval between arrival in the UK and symptom onset was 5.87 years (SD 10.33), the longest time to diagnosis was 20 years. Borderline tuberculoid leprosy (n=71, 42.0%), and lepromatous leprosy (n=,53 33.1%) were the commonest Ridley Jopling types. Dermatologists were the specialists diagnosing leprosy most often. Individuals were treated with World Health Organization recommended drug regimens (rifampicin, dapsone and clofazimine). Conclusion Leprosy is not a disease of travellers but develops after residence in an leprosy endemic area. The number of individuals from a leprosy endemic country reflect both the leprosy prevalence and the migration rates to the United Kingdom. There are challenges in diagnosing leprosy in non-endemic areas and clinicians need to recognise the symptoms and signs of leprosy

    Adult cerebral malaria: acute and subacute imaging findings, long-term clinical consequences.

    Get PDF
    Cerebral malaria is an important cause of mortality and neurodisability in endemic regions. We show MRI features suggestive of cytotoxic and vasogenic cerebral edema followed by microhemorrhages in two adult UK cases, comparing them with an Indian cohort. Long-term follow-up images correlate ongoing changes with residual functional impairment

    Favipiravir, lopinavir-ritonavir, or combination therapy (FLARE): A randomised, double-blind, 2 × 2 factorial placebo-controlled trial of early antiviral therapy in COVID-19

    Get PDF
    BACKGROUND: Early antiviral treatment is effective for Coronavirus Disease 2019 (COVID-19) but currently available agents are expensive. Favipiravir is routinely used in many countries, but efficacy is unproven. Antiviral combinations have not been systematically studied. We aimed to evaluate the effect of favipiravir, lopinavir-ritonavir or the combination of both agents on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral load trajectory when administered early. METHODS AND FINDINGS: We conducted a Phase 2, proof of principle, randomised, placebo-controlled, 2 × 2 factorial, double-blind trial of ambulatory outpatients with early COVID-19 (within 7 days of symptom onset) at 2 sites in the United Kingdom. Participants were randomised using a centralised online process to receive: favipiravir (1,800 mg twice daily on Day 1 followed by 400 mg 4 times daily on Days 2 to 7) plus lopinavir-ritonavir (400 mg/100 mg twice daily on Day 1, followed by 200 mg/50 mg 4 times daily on Days 2 to 7), favipiravir plus lopinavir-ritonavir placebo, lopinavir-ritonavir plus favipiravir placebo, or both placebos. The primary outcome was SARS-CoV-2 viral load at Day 5, accounting for baseline viral load. Between 6 October 2020 and 4 November 2021, we recruited 240 participants. For the favipiravir+lopinavir-ritonavir, favipiravir+placebo, lopinavir-ritonavir+placebo, and placebo-only arms, we recruited 61, 59, 60, and 60 participants and analysed 55, 56, 55, and 58 participants, respectively, who provided viral load measures at Day 1 and Day 5. In the primary analysis, the mean viral load in the favipiravir+placebo arm had changed by -0.57 log10 (95% CI -1.21 to 0.07, p = 0.08) and in the lopinavir-ritonavir+placebo arm by -0.18 log10 (95% CI -0.82 to 0.46, p = 0.58) compared to the placebo arm at Day 5. There was no significant interaction between favipiravir and lopinavir-ritonavir (interaction coefficient term: 0.59 log10, 95% CI -0.32 to 1.50, p = 0.20). More participants had undetectable virus at Day 5 in the favipiravir+placebo arm compared to placebo only (46.3% versus 26.9%, odds ratio (OR): 2.47, 95% CI 1.08 to 5.65; p = 0.03). Adverse events were observed more frequently with lopinavir-ritonavir, mainly gastrointestinal disturbance. Favipiravir drug levels were lower in the combination arm than the favipiravir monotherapy arm, possibly due to poor absorption. The major limitation was that the study population was relatively young and healthy compared to those most affected by the COVID-19 pandemic. CONCLUSIONS: At the current doses, no treatment significantly reduced viral load in the primary analysis. Favipiravir requires further evaluation with consideration of dose escalation. Lopinavir-ritonavir administration was associated with lower plasma favipiravir concentrations. TRIAL REGISTRATION: Clinicaltrials.gov NCT04499677 EudraCT: 2020-002106-68

    Geographical and temporal trends and seasonal relapse in Plasmodium ovale spp. and Plasmodium malariae infections imported to the UK between 1987 and 2015.

    Get PDF
    BACKGROUND: Plasmodium ovale spp. and P. malariae cause illness in endemic regions and returning travellers. Far less is known about these species than P. falciparum and P. vivax. METHODS: The UK national surveillance data, collected 1987 to 2015, were collated with the International Passenger Survey and climatic data to determine geographical, temporal and seasonal trends of imported P. ovale spp. and P. malariae infection. RESULTS: Of 52,242 notified cases of malaria, 6.04% (3157) were caused by P. ovale spp. and 1.61% (841) by P. malariae; mortality was 0.03% (1) and 0.12% (1), respectively. Almost all travellers acquired infection in West or East Africa. Infection rate per travel episode fell fivefold during the study period. The median latency of P. malariae and P. ovale spp. was 18 and 76 days, respectively; delayed presentation occurred with both species. The latency of P. ovale spp. infection imported from West Africa was significantly shorter in those arriving in the UK during the West African peak malarial season compared to those arriving outside it (44 days vs 94 days, p < 0.0001), implying that relapse synchronises with the period of high malarial transmission. This trend was not seen in P. ovale spp. imported from East Africa nor in P. malariae. CONCLUSION: In West Africa, where malaria transmission is highly seasonal, P. ovale spp. may have evolved to relapse during the malarial high transmission season. This has public health implications. Deaths are very rare, supporting current guidelines emphasising outpatient treatment. However, late presentations do occur

    Serum indoleamine 2,3-dioxygenase activity is associated with reduced immunogenicity following vaccination with MVA85A.

    Get PDF
    BackgroundThere is an urgent need for improved vaccines to protect against tuberculosis. The currently available vaccine Bacille Calmette-Guerin (BCG) has varying immunogenicity and efficacy across different populations for reasons not clearly understood. MVA85A is a modified vaccinia virus expressing antigen 85A from Mycobacterium tuberculosis which has been in clinical development since 2002 as a candidate vaccine to boost BCG-induced protection. A recent efficacy trial in South African infants failed to demonstrate enhancement of protection over BCG alone. The immunogenicity was lower than that seen in UK trials.The enzyme Indoleamine 2,3-dioxygenase (IDO) catalyses the first and rate-limiting step in the breakdown of the essential amino acid tryptophan. T cells are dependent on tryptophan and IDO activity suppresses T-cell proliferation and function.MethodsUsing samples collected during phase I trials with MVA85A across the UK and South Africa we have investigated the relationship between vaccine immunogenicity and IDO using IFN-¿ ELISPOT, qPCR and liquid chromatography mass spectrometry.ResultsWe demonstrate an IFN-¿ dependent increase in IDO mRNA expression in peripheral blood mononuclear cells (PBMC) following MVA85A vaccination in UK subjects. IDO mRNA correlates positively with the IFN-¿ ELISPOT response indicating that vaccine specific induction of IDO in PBMC is unlikely to limit the development of vaccine specific immunity. IDO activity in the serum of volunteers from the UK and South Africa was also assessed. There was no change in serum IDO activity following MVA85A vaccination. However, we observed higher baseline IDO activity in South African volunteers when compared to UK volunteers. In both UK and South African serum samples, baseline IDO activity negatively correlated with vaccine-specific IFN-¿ responses, suggesting that IDO activity may impair the generation of a CD4+ T cell memory response.ConclusionsBaseline IDO activity was higher in South African volunteers when compared to UK volunteers, which may represent a potential mechanism for the observed variation in vaccine immunogenicity in South African and UK populations and may have important implications for future vaccination strategies.Trial registrationTrials are registered at ClinicalTrials.gov; UK cohort NCT00427830, UK LTBI cohort NCT00456183, South African cohort NCT00460590, South African LTBI cohort NCT00480558

    Serum and cerebrospinal fluid biomarker profiles in acute SARS-CoV-2-associated neurological syndromes.

    Get PDF
    Preliminary pathological and biomarker data suggest that SARS-CoV-2 infection can damage the nervous system. To understand what, where and how damage occurs, we collected serum and CSF from patients with COVID-19 and characterized neurological syndromes involving the PNS and CNS (n = 34). We measured biomarkers of neuronal damage and neuroinflammation, and compared these with non-neurological control groups, which included patients with (n = 94) and without (n = 24) COVID-19. We detected increased concentrations of neurofilament light, a dynamic biomarker of neuronal damage, in the CSF of those with CNS inflammation (encephalitis and acute disseminated encephalomyelitis) [14 800 pg/ml (400, 32 400)], compared to those with encephalopathy [1410 pg/ml (756, 1446)], peripheral syndromes (Guillain-Barré syndrome) [740 pg/ml (507, 881)] and controls [872 pg/ml (654, 1200)]. Serum neurofilament light levels were elevated across patients hospitalized with COVID-19, irrespective of neurological manifestations. There was not the usual close correlation between CSF and serum neurofilament light, suggesting serum neurofilament light elevation in the non-neurological patients may reflect peripheral nerve damage in response to severe illness. We did not find significantly elevated levels of serum neurofilament light in community cases of COVID-19 arguing against significant neurological damage. Glial fibrillary acidic protein, a marker of astrocytic activation, was not elevated in the CSF or serum of any group, suggesting astrocytic activation is not a major mediator of neuronal damage in COVID-19
    corecore