5 research outputs found

    Thermal Hall Conductivity as a Probe of Gap Structure in Multi-band Superconductors: The Case of Ba1−xKxFe2As2\rm Ba_{1-x}K_xFe_2As_2

    Full text link
    The sign and profile of the thermal Hall conductivity κxy\kappa_{xy} gives important insights into the gap structure of multi-band superconductors. With this perspective, we have investigated κxy\kappa_{xy} and the thermal conductivity κxx\kappa_{xx} in Ba1−xKxFe2As2\rm Ba_{1-x}K_xFe_2As_2 which display large peak anomalies in the superconducting state. The anomalies imply that a large hole-like quasiparticle (qp) population exists below the critical temperature TcT_c. We show that the qp mean-free-path inferred from κxx\kappa_{xx} reproduces the observed anomaly in κxy\kappa_{xy}, providing a consistent estimate of a large qp population. Further, we demonstrate that the hole-like signal is consistent with a theoretical scenario where despite potentially large gap variations on the electron pockets, the minimal homogeneous gap of the superconducting phase resides at a hole pocket. Implications for probing the gap structure in the broader class of pnictide superconductors are discussed.Comment: 5 pages, 4 figures. Orientation significantly updated from previous (0811.4668v1) reflecting new theoretical understanding of experimental results and physical implications. Introduction, discussion, and figures updated including additional figure for model calculatio

    Momentum dependence of superconducting gap, strong-coupling dispersion kink, and tightly bound Cooper pairs in the high-T_c (Sr,Ba)_(1−x)(K,Na)_xFe_2As_2 superconductors

    Get PDF
    We present a systematic angle-resolved photoemission spectroscopic study of the high-Tc superconductor class (Sr/Ba)_(1−x)K_xFe_2As_2. By utilizing a photon-energy-modulation contrast and scattering geometry we report the Fermi surface and the momentum dependence of the superconducting gap, Δ(k⃗ ). A prominent quasiparticle dispersion kink reflecting strong scattering processes is observed in a binding-energy range of 25–55 meV in the superconducting state, and the coherence length or the extent of the Cooper pair wave function is found to be about 20 Å, which is uncharacteristic of a superconducting phase realized by the BCS-phonon-retardation mechanism. The observed 40±15 meV kink likely reflects contributions from the frustrated spin excitations in a J_1-J_2 magnetic background and scattering from the soft phonons. Results taken collectively provide direct clues to the nature of the pairing potential including an internal phase-shift factor in the superconducting order parameter which leads to a Brillouin zone node in a strong-coupling setting

    Momentum-dependence of Superconducting Gap, strong-coupling dispersion Kink, and tightly bound Cooper pairs in the high-Tc (Sr,Ba)1-x(K,Na)xFe2As2 superconductors

    Full text link
    We present a systematic angle-resolved photoemission spectroscopic study of the high-Tc superconductor class (Sr/Ba){1-x}(K/Na)xFe2As2. By utilizing a photon-energy-modulation contrast and scattering geometry we report the Fermi surface and the momentum dependence of the superconducting gap, Delta(k). A prominent quasiparticle dispersion kink reflecting strong scattering processes is observed in a binding-energy range of 25-55 meV in the superconducting state, and the coherence length or the extent of the Cooper pair wave function is found to be about 20-angstrom, which is uncharacteristic of a superconducting phase realized by the BCS-phonon-retardation mechanism. The observed 40 meV kink likely reflects contributions from the frustrated spin excitations and scattering from the soft phonons. Results taken collectively provide direct clues to the nature of the pairing potential including an internal phase-shift factor in the superconducting order parameter which leads to a Brillouin zone node in a strong-coupling setting.Comment: 12 pages + 5 figures; SC order-parameter is fit to the cosKx.cosKy function (Fig-5

    Sensitivity of the superconducting state and magnetic susceptibility to key aspects of electronic structure in ferropnictides

    Get PDF
    Experiments on the iron-pnictide superconductors appear to show some materials where the ground state is fully gapped, and others where low-energy excitations dominate, possibly indicative of gap nodes. Within the framework of a 5-orbital spin fluctuation theory for these systems, we discuss how changes in the doping, the electronic structure or interaction parameters can tune the system from a fully gapped to nodal sign-changing gap with s-wave (A1gA_{1g}) symmetry (s±s^\pm). In particular we focus on the role of the hole pocket at the (π,π)(\pi,\pi) point of the unfolded Brillouin zone identified as crucial to the pairing by Kuroki {\it et al.}, and show that its presence leads to additional nesting of hole and electron pockets which stabilizes the isotropic s±s^\pm state. The pocket's contribution to the pairing can be tuned by doping, surface effects, and by changes in interaction parameters, which we examine. Analytic expressions for orbital pairing vertices calculated within the RPA fluctuation exchange approximation allow us to draw connections between aspects of electronic structure, interaction parameters, and the form of the superconducting gap

    Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors

    Get PDF
    In the first three years since the discovery of Fe-based high Tc superconductors, scanning tunneling microscopy (STM) and spectroscopy have shed light on three important questions. First, STM has demonstrated the complexity of the pairing symmetry in Fe-based materials. Phase-sensitive quasiparticle interference (QPI) imaging and low temperature spectroscopy have shown that the pairing order parameter varies from nodal to nodeless s\pm within a single family, FeTe1-xSex. Second, STM has imaged C4 -> C2 symmetry breaking in the electronic states of both parent and superconducting materials. As a local probe, STM is in a strong position to understand the interactions between these broken symmetry states and superconductivity. Finally, STM has been used to image the vortex state, giving insights into the technical problem of vortex pinning, and the fundamental problem of the competing states introduced when superconductivity is locally quenched by a magnetic field. Here we give a pedagogical introduction to STM and QPI imaging, discuss the specific challenges associated with extracting bulk properties from the study of surfaces, and report on progress made in understanding Fe-based superconductors using STM techniques.Comment: 36 pages, 23 figures, 229 reference
    corecore