17 research outputs found

    Measurement of the Low-temperature Loss Tangent of High-resistivity Silicon with a High Q-factor Superconducting Resonator

    Full text link
    In this letter, we present the direct loss tangent measurement of a high-resistivity intrinsic (100) silicon wafer in the temperature range from ~ 70 mK to 1 K, approaching the quantum regime. The measurement was performed using a technique that takes advantage of a high quality factor superconducting niobium resonator and allows to directly measure the loss tangent of insulating materials with high level of accuracy and precision. We report silicon loss tangent values at the lowest temperature and for electric field amplitudes comparable to those found in planar transmon devices one order of magnitude larger than what was previously estimated. In addition, we discover a non-monotonic trend of the loss tangent as a function of temperature that we describe by means of a phenomenological model based on variable range hopping conduction between localized states around the Fermi energy. We also observe that the dissipation increases as a function of the electric field and that this behavior can be qualitatively described by the variable range hopping conduction mechanism as well. This study lays the foundations for a novel approach to investigate the loss mechanisms and accurately estimate the loss tangent in insulating materials in the quantum regime, leading to a better understanding of coherence in quantum devices

    Physics of limiting phenomena in superconducting microwave resonators: Vortex dissipation, ultimate quench and quality factor degradation mechanisms

    No full text
    Superconducting niobium accelerating cavities are devices operating in radiofrequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates—in some cases—in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described in detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime—pinning- or flux-flow-dominated—can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associated to the superheating field, which is intimately correlated to the penetration of magnetic flux vortices in the material. Experimental data for N-doped cavities suggest that uniform Ginzburg-Landau parameter cavities are statistically limited by the lower critical field, in terms of accelerating gradient. By introducing a Ginzburg-Landau parameter profile at the cavity rf surface—dirty layer—the accelerating gradient of superconducting resonators can be enhanced. The description of the physics behind the accelerating gradient enhancement as a consequence of the dirty layer is carried out by solving numerically the Ginzburg-Landau equations for the layered system. The enhancement is showed to be promoted by the higher energy barrier to vortex penetration, and by the enhanced lower critical field. Another serious threat to the quality factor during the cavity operation is the extra dissipation introduced by the quench. Such quality factor degradation mechanism due to the quench, is generated by the trapping of external magnetic flux at the quench spot. The purely extrinsic origin of such extra dissipation is proven by the impossibility of decrease the quality factor by quenching in a magnetic field-free environment. Also, a clear relation of the dissipation introduced by quenching to the orientation of the applied magnetic field is observed. The full recover of the quality factor by re-quenching in compensated field is possible when the trapped flux at the quench spot is modest. On the contrary, when the trapped magnetic flux is too large, the quality factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during the quench

    Searches for New Particles, Dark Matter, and Gravitational Waves with SRF Cavities

    No full text
    International audienceThis is a Snowmass white paper on the utility of existing and future superconducting cavities to probe fundamental physics. Superconducting radio frequency (SRF) cavity technology has seen tremendous progress in the past decades, as a tool for accelerator science. With advances spear-headed by the SQMS center at Fermilab, they are now being brought to the quantum regime becoming a tool in quantum science thanks to the high degree of coherence. The same high quality factor can be leveraged in the search for new physics, including searches for new particles, dark matter, including the QCD axion, and gravitational waves. We survey some of the physics opportunities and the required directions of R&D. Given the already demonstrated integration of SRF cavities in large accelerator systems, this R&D may enable larger scale searches by dedicated experiments

    The International Linear Collider: Report to Snowmass 2021

    No full text
    The International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This document brings the story of the ILC up to date, emphasizing its strong physics motivation, its readiness for construction, and the opportunity it presents to the US and the global particle physics community

    The International Linear Collider: Report to Snowmass 2021

    No full text
    International audienceThe International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This document brings the story of the ILC up to date, emphasizing its strong physics motivation, its readiness for construction, and the opportunity it presents to the US and the global particle physics community
    corecore