89 research outputs found

    Optical properties of a novel yellow fluorescent dopant for use in organic LEDs

    Get PDF
    In this paper, the optical properties of a novel organic, 2,8-di(t-butyl)-5,11-di[4(t-butyl) phenyl]-6,12-diphenylnaphthacene (tetra(t-butyl)rubrene) have been investigated. Our results show that there are two peaks in the photoluminescence (PL) spectra of tetra(t-butyl)rubrene (TBRb) which are also confirmed in the electroluminescence (EL) spectra. Photo-quenching of the PL intensity is observed when the irradiation time increases. It is shown that oxidation is the dominant reason for photo-quenching. The absolute refractive index and absorption coefficient have also been determined and the results correlate well with the PL results. The results show that TBRb can be a good dopant to achieve the Förster energy transfer and to assist light emission. The optical properties of TBRb are similar to those of rubrene; however, the PL of TBRb is much stronger than that of rubrene. Finally, although crystalline organics have been commonly reported by heating the sample, we report crystallization of TBRb at low temperature <230 K when the TBRb film is in an amorphous form before cooling. © Springer-Verlag 2004.postprin

    Optical Properties of a Novel Dye in Yellow Florescent Organic LEDs

    Get PDF
    In this paper, time-resolved PL, lifetime and crystallization of a novel organic, 2,8-di(t-butyl)-5,11-di[4(t-butyl)phenyl]-6,12-diphenylnaphthacene, which is considered to be potential candidate to substitute the conventionally used 5,6,11,12-tetraphenylnaphthacene for a higher efficient yellow-color organic LED, were investigated. The PL intensity will reduce when the irradiation time increases because of photo-quenching. It is shown that oxidation is the dominant reason for photo-quenching. In addition, TBRb has two lifetimes. The short one is /spl sim/5 ns and the long one is /spl sim/31 ns. They are considerably contributed by the short PL peak and long PL peak respectively. Furthermore, we first report, to the best knowledge, crystallization of TBRb at low temperature of 11 K and with irradiation.published_or_final_versio

    Understanding the molecular pathogenesis of SOX9 Y440X campomelic dysplasia

    Get PDF
    Human SOX9 mutations cause the skeletal malformation syndrome campomelic dysplasia (CD). Complete inactivation of the Sox9 gene in mice results in failure of cartilage formation. Studies in zebrafish and Xenopus suggest that Sox9 may be crucial for specification of the otic placode. In mice, loss of Sox9 results in failure of otic placode invagination. Heterozygous mutations in human SOX9 result in conductive and sensorineural deafness in some CD patients, implying a later morphogenetic role but phenotypic details are limited. Sox9-/- null mice die before morphogenesis of the inner ear is complete, precluding investigation of the role of Sox9 later in ear develop...postprin

    The Endocrine and Metabolic Characteristics of a Large Bardet-Biedl Syndrome Clinic Population

    Get PDF
    Context: Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder in which previous reports have described obesity and a metabolic syndrome. Objective: We describe the endocrine and metabolic characteristics of a large BBS population compared with matched control subjects. Design: We performed a case-control study. Setting: This study was performed at a hospital clinic. Patients: Study patients had a clinical or genetic diagnosis of BBS. Main Outcome Measurements: Our study determined the prevalence of a metabolic syndrome in our cohort. Results: A total of 152 subjects were studied. Eighty-four (55.3%) were male. Mean (± standard deviation) age was 33.2 ± 1.0 years. Compared with age-, sex-, and body mass index-matched control subjects, fasting glucose and insulin levels were significantly higher in subjects with BBS (glucose: BBS, 5.2 ± 1.2 mmol/L vs control, 4.9 ± 0.9 mmol/L, P = 0.04; insulin: BBS, 24.2 ± 17.0 pmol/L vs control, 14.2 ± 14.8 pmol/L, P < 0.001). Serum triglycerides were significantly higher in subjects with BBS (2.0 ± 1.2 mmol/L) compared with control subjects (1.3 ± 0.8 mmol/L; P < 0.001), but total cholesterol, high-density lipoprotein, and low-density lipoprotein were similar in both groups. Systolic blood pressure was higher in the BBS group (BBS, 135 ± 18 mm Hg vs control subjects, 129 ± 16 mm Hg; P = 0.02). Alanine transaminase was raised in 34 (26.8%) subjects with BBS, compared with five (8.9%) control subjects (P = 0.01). The rate of metabolic syndrome, determined using International Diabetes Federation criteria, was significantly higher in the BBS group (54.3%) compared with control subjects (26% P < 0.001). Twenty-six (19.5%) of male subjects with BBS were hypogonadal (serum testosterone, 9.9 ± 5.3 mmol/L), but significant pituitary abnormalities were uncommon. Subclinical hypothyroidism was present in 24 of 125 (19.4%) patients with BBS, compared with 3 of 65 (4.6%) control subjects (P = 0.01). Conclusions: Insulin resistance and the metabolic syndrome are increased in adult patients with BBS compared with matched control subjects. Increased subclinical hypothyroidism in the BBS cohort needs further investigation

    The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence

    Get PDF
    Funding: This work was funded by the European Research Council [http://erc.europa.eu/], AJPB (STRIFE Advanced Grant; C-2009-AdG-249793). The work was also supported by: the Wellcome Trust [www.wellcome.ac.uk], AJPB (080088, 097377); the UK Biotechnology and Biological Research Council [www.bbsrc.ac.uk], AJPB (BB/F00513X/1, BB/K017365/1); the CNPq-Brazil [http://cnpq.br], GMA (Science without Borders fellowship 202976/2014-9); and the National Centre for the Replacement, Refinement and Reduction of Animals in Research [www.nc3rs.org.uk], DMM (NC/K000306/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments We thank Dr. Elizabeth Johnson (Mycology Reference Laboratory, Bristol) for providing strains, and the Aberdeen Proteomics facility for the biotyping of S. cerevisiae clinical isolates, and to Euroscarf for providing S. cerevisiae strains and plasmids. We are grateful to our Microscopy Facility in the Institute of Medical Sciences for their expert help with the electron microscopy, and to our friends in the Aberdeen Fungal Group for insightful discussions.Peer reviewedPublisher PD

    Rasd1 Modulates the Coactivator Function of NonO in the Cyclic AMP Pathway

    Get PDF
    All living organisms exhibit autonomous daily physiological and behavioural rhythms to help them synchronize with the environment. Entrainment of circadian rhythm is achieved via activation of cyclic AMP (cAMP) and mitogen-activated protein kinase signaling pathways. NonO (p54nrb) is a multifunctional protein involved in transcriptional activation of the cAMP pathway and is involved in circadian rhythm control. Rasd1 is a monomeric G protein implicated to play a pivotal role in potentiating both photic and nonphotic responses of the circadian rhythm. In this study, we have identified and validated NonO as an interacting partner of Rasd1 via affinity pulldown, co-immunoprecipitation and indirect immunofluorescence studies. The GTP-hydrolysis activity of Rasd1 is required for the functional interaction. Functional interaction of Rasd1-NonO in the cAMP pathway was investigated via reporter gene assays, chromatin immunoprecipitation and gene knockdown. We showed that Rasd1 and NonO interact at the CRE-site of specific target genes. These findings reveal a novel mechanism by which the coregulator activity of NonO can be modulated

    Preparation and characterization of polypyrrole/graphene nanocomposite films and their electrochemical performance

    Get PDF
    A one-step electrochemical process had been employed to synthesize nanocomposite films of polypyrrole/graphene (PPy/GR) by electrochemical polymerisation on indium tin oxide (ITO) from an aqueous solution containing pyrrole monomer, graphene oxide (GO) nanosheets and sodium p-toluenesulfonate (NapTS). The X-ray diffraction (XRD) patterns showed that the typical peak of GO at 9.9o was missing from the nanocomposite’s diffraction pattern, suggesting that the GO had been stripped off of its oxygenous groups after the reaction. We postulated that a nanocomposite film was produced through a layer-by-layer deposition based on field emission scanning electron microscope (FESEM) images. The Raman spectroscopy profiles exhibited that the D/G intensity ratio (ID/IG) of PPy was not altered by the inclusion of GO due to the low concentration of the material used. However, the concentration was sufficient to increase the specific capacitance of the nanocomposite by 20 times compared to that of pure PPy, reflecting a synergistic effect between PPy and GR, as analysed by a three-electrode electrochemical cell. The electrochemical performance of the nanocomposites was affected by varying the deposition parameters such as concentrations of pyrrole and GO, scan rate, deposition time and deposition potential
    corecore