25 research outputs found

    Quasifree Neutron Knockout from Ca 54 Corroborates Arising N=34 Neutron Magic Number

    No full text
    7 pags., 4 figs., 1 tab.Exclusive cross sections and momentum distributions have been measured for quasifree one-neutron knockout reactions from a Ca54 beam striking on a liquid hydrogen target at ∼200 MeV/u. A significantly larger cross section to the p3/2 state compared to the f5/2 state observed in the excitation of Ca53 provides direct evidence for the nature of the N=34 shell closure. This finding corroborates the arising of a new shell closure in neutron-rich calcium isotopes. The distorted-wave impulse approximation reaction formalism with shell model calculations using the effective GXPF1Bs interaction and ab initio calculations concur our experimental findings. Obtained transverse and parallel momentum distributions demonstrate the sensitivity of quasifree one-neutron knockout in inverse kinematics on a thick liquid hydrogen target with the reaction vertex reconstructed to final state spin-parity assignments.We would like to express our gratitude to the RIKEN Nishina Center accelerator staff for providing the stable and high-intensity beam andtotheBigRIPSteam for operatingthe secondary beams. S. C. acknowledges the support of the IPA program at RIKEN Nishina Center. J. L. acknowledges the support from Research Grants Council (RGC) of Hong Kong with grant of Early Career Scheme (ECS-27303915). K. O., K. Y., and Y. C. acknowledge the support from Grants-in-Aid of the Japan Society for the Promotion of Science under Grants No. JP16K05352. Y. L. S. acknowledges the support of the Marie Skłodowska-Curie Individual Fellowship (H2020-MSCA-IF-2015-705023). V. V. acknowledges support from the Spanish Ministerio de Economía y Competitividad under Contract No. FPA2017- 84756-C4-2-P. L. X. C. and B. D. L. would like to thank MOST for its support through the Physics Development Program Grant No. ĐTĐLCN.25/18. D. R. and V. W. acknowledge the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Grant No. SFB1245. V. W. and P. K. acknowledge the German BMBF Grant No. 05P19RDFN1. P. K. was also supported by HGSHIRe. D. S. was supported by Projects No. GINOP-2.3.3- 15-2016-00034 and No. NKFIH-NN114454. I. G. has been supported by HIC for FAIR and Croatian Science Foundation under Projects No. 1257 and No. 7194. K. I. H., D. K., and S. Y. P. acknowledge the support from the NRF grant funded bythe Korea government (No. 2016K1A3A7A09005580 and No. 2018R1A5A1025563). This work was also supported by the United Kingdom Science and Technology Facilities Council (STFC) under Grants No. ST/P005314/1 and No. ST/L005816/1, and by NKFIH (128072), and by JSPS KAKENHI Grant No. 16H02179, and by MEXT KAKENHI Grant No. 18H05404. The development of MINOS were supported by the European Research Council through the ERC Grant No. MINOS-258567. Green’s function calculations were performed using HPC resources from the DiRAC Data Intensive service at Leicester, UK (funded by the UK BEIS via STFC capital Grants No. ST/K000373/1 and No. ST/R002363/1 and STFC DiRAC Operations Grant No. ST/R001014/1) and from GENCI-TGCC, France (Project No. A0050507392)
    corecore