229 research outputs found

    Open Access: Is a National Licence the answer?

    Get PDF

    Bathymetric terrain model of the Atlantic margin for marine geological investigations.

    Get PDF
    Bathymetric terrain models of seafloor morphology are an important component of marine geological investigations. Advances in acquisition and processing technologies of bathymetric data have facilitated the creation of high-resolution bathymetric surfaces that approach the resolution of similar surfaces available for onshore investigations. These bathymetric terrain models provide a detailed representation of the Earth’s subaqueous surface and, when combined with other geophysical and geological datasets, allow for interpretation of modern and ancient geological processes. The purpose of the bathymetric terrain model presented in this report is to provide a high-quality bathymetric surface of the Atlantic margin of the United States that can be used to augment current and future marine geological investigations. The input data for this bathymetric terrain model, covering almost 305,000 square kilometers, were acquired by several sources, including the U.S. Geological Survey, the National Oceanic and Atmospheric Administration National Geophysical Data Center and the Ocean Exploration Program, the University of New Hampshire, and the Woods Hole Oceanographic Institution. These data have been edited using hydrographic data processing software to maximize the quality, usability, and cartographic presentation of the combined terrain model

    Towards Fully Purposing Universities to Deliver Public Benefit

    Get PDF
    In leadership positions at UCL, we have spent more than a decade seeking to fulfil our university's founding commitment—inspired almost two centuries ago by the utilitarian philosopher Jeremy Bentham—to innovation, accessibility, and relevance for the benefit of humanity. Our guiding principle has been to make our institution and its activities greater than the sum of its parts. To enable us to have most impact in “sustainable human progress,” we have focused our approach on cross-disciplinarity—by which we mean collaboration between experts in different disciplines that transcends subject boundaries—because the problems faced by society cannot be solved by research from one discipline alone. In recent years we have come to understand the boundaries between disciplines to be a subset of the many types of barriers—such as those between communities (disciplinary, academic and otherwise) and between different kinds of activity—that can inhibit the fulfilment of our vision to maximise our public benefit. In order to address crucial challenges—from the local to the global—we need to form collaborations across society that increase our mutual knowledge and engagement. We need to understand how the translation and application of knowledge will change in different settings and according to different practicalities. And we need to better reflect and enhance our role as convenors of different stakeholders to promote greater shared dialogue, co-creation and action

    Geomorphic characterization of the U.S. Atlantic continental margin

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine Geology 338 (2013): 46–63, doi:10.1016/j.margeo.2012.12.008.The increasing volume of multibeam bathymetry data collected along continental margins is providing new opportunities to study the feedbacks between sedimentary and oceanographic processes and seafloor morphology. Attempts to develop simple guidelines that describe the relationships between form and process often overlook the importance of inherited physiography in slope depositional systems. Here, we use multibeam bathymetry data and seismic reflection profiles spanning the U.S. Atlantic outer continental shelf, slope and rise from Cape Hatteras to New England to quantify the broad-scale, across-margin morphological variation. Morphometric analyses suggest the margin can be divided into four basic categories that roughly align with Quaternary sedimentary provinces. Within each category, Quaternary sedimentary processes exerted heavy modification of submarine canyons, landslide complexes and the broad-scale morphology of the continental rise, but they appear to have preserved much of the pre-Quaternary, across-margin shape of the continental slope. Without detailed constraints on the substrate structure, first-order morphological categorization the U.S. Atlantic margin does not provide a reliable framework for predicting relationships between form and process.This work was funded by the USGS Mendenhall Postdoctoral Fellowship Program and the U.S. Nuclear Regulatory Commission

    Geomorphic process fingerprints in submarine canyons

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine Geology 337 (2013): 53-66, doi:10.1016/j.margeo.2013.01.005.Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics

    Making Decisions on the Demolition or Refurbishment of Social Housing

    Get PDF
    This policy briefing summarises the main factors involved when deciding whether to refurbish or demolish social housing, including environmental and economic costs and benefits. Such decisions will involve trade-offs between different objectives and values. The briefing discusses: • evaluating the economic case for refurbishment, including impacts on communities and residents; • the energy and carbon implications of demolition compared to refurbishment; • issues around water and waste; and • social factors in housing and regeneration, including health and community participation

    Assessment of tsunami hazard to the U.S. Atlantic margin

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine Geology 353 (2014): 31-54, doi:10.1016/j.margeo.2014.02.011.Tsunami hazard is a very low-probability, but potentially high-risk natural hazard, posing unique challenges to scientists and policy makers trying to mitigate its impacts. These challenges are illustrated in this assessment of tsunami hazard to the U.S. Atlantic margin. Seismic activity along the U.S. Atlantic margin in general is low, and confirmed paleo-tsunami deposits have not yet been found, suggesting a very low rate of hazard. However, the devastating 1929 Grand Banks tsunami along the Atlantic margin of Canada shows that these events continue to occur. Densely populated areas, extensive industrial and port facilities, and the presence of ten nuclear power plants along the coast, make this region highly vulnerable to flooding by tsunamis and therefore even low-probability events need to be evaluated. We can presently draw several tentative conclusions regarding tsunami hazard to the U.S. Atlantic coast. Landslide tsunamis likely constitute the biggest tsunami hazard to the coast. Only a small number of landslides have so far been dated and they are generally older than 10,000 years. The geographical distribution of landslides along the margin is expected to be uneven and to depend on the distribution of seismic activity along the margin and on the geographical distribution of Pleistocene sediment. We do not see evidence that gas hydrate dissociation contributes to the generation of landslides along the U.S. Atlantic margin. Analysis of landslide statistics along the fluvial and glacial portions of the margin indicate that most of the landslides are translational, were probably initiated by seismic acceleration, and failed as aggregate slope failures. How tsunamis are generated from aggregate landslides remains however, unclear. Estimates of the recurrence interval of earthquakes along the continental slope may provide maximum estimates for the recurrence interval of landslide along the margin. Tsunamis caused by atmospheric disturbances and by coastal earthquakes may be more frequent than those generated by landslides, but their amplitudes are probably smaller. Among the possible far-field earthquake sources, only earthquakes located within the Gulf of Cadiz or west of the Tore-Madeira Rise are likely to affect the U.S. coast. It is questionable whether earthquakes on the Puerto Rico Trench are capable of producing a large enough tsunami that will affect the U.S. Atlantic coast. More information is needed to evaluate the seismic potential of the northern Cuba fold-and-thrust belt. The hazard from a volcano flank collapse in the Canary Islands is likely smaller than originally stated, and there is not enough information to evaluate the magnitude and frequency of flank collapse from the Azores Islands. Both deterministic and probabilistic methods to evaluate the tsunami hazard from the margin are available for application to the Atlantic margin, but their implementation requires more information than is currently available.The work was funded by the U.S.-NRC Job Code V6166: Tsunami Landslide Source Probability and Potential Impact on New and Existing Power Plants

    Geologic controls on submarine slope failure along the central U.S. Atlantic margin : insights from the Currituck Slide Complex

    Get PDF
    © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Geology 385 (2017): 114-130, doi:10.1016/j.margeo.2016.10.007.Multiple styles of failure, ranging from densely spaced, mass transport driven canyons to the large, slab-type slope failure of the Currituck Slide, characterize adjacent sections of the central U.S. Atlantic margin that appear to be defined by variations in geologic framework. Here we use regionally extensive, deep penetration multichannel seismic (MCS) profiles to reconstruct the influence of the antecedent margin physiography on sediment accumulation along the central U.S. Atlantic continental shelf-edge, slope, and uppermost rise from the Miocene to Present. These data are combined with highresolution sparker MCS reflection profiles and multibeam bathymetry data across the Currituck Slide complex. Pre-Neogene allostratigraphic horizons beneath the slope are generally characterized by low gradients and convex downslope profiles. This is followed by the development of thick, prograded deltaic clinoforms during the middle Miocene. Along-strike variations in morphology of a regional unconformity at the top of this middle Miocene unit appear to have set the stage for differing styles of mass transport along the margin. Areas north and south of the Currituck Slide are characterized by oblique margin morphology, defined by an angular shelf-edge and a relatively steep (>8°), concave slope profile. Upper slope sediment bypass, closely spaced submarine canyons, and small, localized landslides confined to canyon heads and sidewalls characterize these sectors of the margin. In contrast, the Currituck region is defined by a sigmoidal geometry, with a rounded shelf-edge rollover and gentler slope gradient (<6°). Thick (>800 m), regionally continuous stratified slope deposits suggest the low gradient Currituck region was a primary depocenter for fluvial inputs during multiple sea level lowstands. These results imply that the rounded, gentle slope physiography developed during the middle Miocene allowed for a relatively high rate of subsequent sediment accumulation, thus providing a mechanism for compaction–induced overpressure that preconditioned the Currituck region for failure. Detailed examination of the regional geological framework illustrates the importance of both sediment supply and antecedent slope physiography in the development of large, potentially unstable depocenters along passive margins.The U.S. Geological Survey, the U.S. Nuclear Regulatory Commission and Coastal Carolina University funded this research
    • …
    corecore