35,795 research outputs found
Multinational Firms, Monopolistic Competition and Foreign Investment Uncertainty
This is a model of multinational firms, which introduces option value of foreign direct investment, into a framework of Dixit-Stiglitz type monopolistic competition. Starting from a pure trading equilibrium and solving for the optimal investment rule gives a scale-up factor which implies existence of a wedge between markup revenues and foreign investment costs. Greater volatility and risk aversion increase this scale-up over foreign investment costs implying a delay in the exercise of FDI option, while growing market size and national income facilitate early exercise. The model is extended to include a Poisson jump process, which has policy implications for FDI reforms and explains 'wait and watch' behaviour of multinational firms better than a pure comparative advantage-trade cost framework does. While investment under uncertainty literature is based on the theory of call options, I solve 'FDI option' as a put option, thereby also enriching the theory of real options.Multinational firm, monopolistic competition, foreign investment uncertainty,FDI option
Angle Tree: Nearest Neighbor Search in High Dimensions with Low Intrinsic Dimensionality
We propose an extension of tree-based space-partitioning indexing structures
for data with low intrinsic dimensionality embedded in a high dimensional
space. We call this extension an Angle Tree. Our extension can be applied to
both classical kd-trees as well as the more recent rp-trees. The key idea of
our approach is to store the angle (the "dihedral angle") between the data
region (which is a low dimensional manifold) and the random hyperplane that
splits the region (the "splitter"). We show that the dihedral angle can be used
to obtain a tight lower bound on the distance between the query point and any
point on the opposite side of the splitter. This in turn can be used to
efficiently prune the search space. We introduce a novel randomized strategy to
efficiently calculate the dihedral angle with a high degree of accuracy.
Experiments and analysis on real and synthetic data sets shows that the Angle
Tree is the most efficient known indexing structure for nearest neighbor
queries in terms of preprocessing and space usage while achieving high accuracy
and fast search time.Comment: To be submitted to IEEE Transactions on Pattern Analysis and Machine
Intelligenc
Highlights from day three of the EuroSciCon 2015 Sports Science Summit.
This EuroSciCon Sports Science Summit represented a significant gathering of leading professionals in the field of sports science. The conference was held on 13-15 January 2015 at the O2 arena, London, UK. The chairman on the third day was Mr Greg Robertson, a specialist trainee Orthopedic surgeon from Edinburgh. The conference attracted over 80 attendants from all over the world, with 32 presentations from invited speakers and peer-reviewed submissions. This meeting report provides a summary of the best abstracts from the conference
Learning From Labeled And Unlabeled Data: An Empirical Study Across Techniques And Domains
There has been increased interest in devising learning techniques that
combine unlabeled data with labeled data ? i.e. semi-supervised learning.
However, to the best of our knowledge, no study has been performed across
various techniques and different types and amounts of labeled and unlabeled
data. Moreover, most of the published work on semi-supervised learning
techniques assumes that the labeled and unlabeled data come from the same
distribution. It is possible for the labeling process to be associated with a
selection bias such that the distributions of data points in the labeled and
unlabeled sets are different. Not correcting for such bias can result in biased
function approximation with potentially poor performance. In this paper, we
present an empirical study of various semi-supervised learning techniques on a
variety of datasets. We attempt to answer various questions such as the effect
of independence or relevance amongst features, the effect of the size of the
labeled and unlabeled sets and the effect of noise. We also investigate the
impact of sample-selection bias on the semi-supervised learning techniques
under study and implement a bivariate probit technique particularly designed to
correct for such bias
A Bicriteria Approximation for the Reordering Buffer Problem
In the reordering buffer problem (RBP), a server is asked to process a
sequence of requests lying in a metric space. To process a request the server
must move to the corresponding point in the metric. The requests can be
processed slightly out of order; in particular, the server has a buffer of
capacity k which can store up to k requests as it reads in the sequence. The
goal is to reorder the requests in such a manner that the buffer constraint is
satisfied and the total travel cost of the server is minimized. The RBP arises
in many applications that require scheduling with a limited buffer capacity,
such as scheduling a disk arm in storage systems, switching colors in paint
shops of a car manufacturing plant, and rendering 3D images in computer
graphics.
We study the offline version of RBP and develop bicriteria approximations.
When the underlying metric is a tree, we obtain a solution of cost no more than
9OPT using a buffer of capacity 4k + 1 where OPT is the cost of an optimal
solution with buffer capacity k. Constant factor approximations were known
previously only for the uniform metric (Avigdor-Elgrabli et al., 2012). Via
randomized tree embeddings, this implies an O(log n) approximation to cost and
O(1) approximation to buffer size for general metrics. Previously the best
known algorithm for arbitrary metrics by Englert et al. (2007) provided an
O(log^2 k log n) approximation without violating the buffer constraint.Comment: 13 page
Network Design with Coverage Costs
We study network design with a cost structure motivated by redundancy in data
traffic. We are given a graph, g groups of terminals, and a universe of data
packets. Each group of terminals desires a subset of the packets from its
respective source. The cost of routing traffic on any edge in the network is
proportional to the total size of the distinct packets that the edge carries.
Our goal is to find a minimum cost routing. We focus on two settings. In the
first, the collection of packet sets desired by source-sink pairs is laminar.
For this setting, we present a primal-dual based 2-approximation, improving
upon a logarithmic approximation due to Barman and Chawla (2012). In the second
setting, packet sets can have non-trivial intersection. We focus on the case
where each packet is desired by either a single terminal group or by all of the
groups, and the graph is unweighted. For this setting we present an O(log
g)-approximation.
Our approximation for the second setting is based on a novel spanner-type
construction in unweighted graphs that, given a collection of g vertex subsets,
finds a subgraph of cost only a constant factor more than the minimum spanning
tree of the graph, such that every subset in the collection has a Steiner tree
in the subgraph of cost at most O(log g) that of its minimum Steiner tree in
the original graph. We call such a subgraph a group spanner.Comment: Updated version with additional result
- …
