35,795 research outputs found

    Multinational Firms, Monopolistic Competition and Foreign Investment Uncertainty

    Get PDF
    This is a model of multinational firms, which introduces option value of foreign direct investment, into a framework of Dixit-Stiglitz type monopolistic competition. Starting from a pure trading equilibrium and solving for the optimal investment rule gives a scale-up factor which implies existence of a wedge between markup revenues and foreign investment costs. Greater volatility and risk aversion increase this scale-up over foreign investment costs implying a delay in the exercise of FDI option, while growing market size and national income facilitate early exercise. The model is extended to include a Poisson jump process, which has policy implications for FDI reforms and explains 'wait and watch' behaviour of multinational firms better than a pure comparative advantage-trade cost framework does. While investment under uncertainty literature is based on the theory of call options, I solve 'FDI option' as a put option, thereby also enriching the theory of real options.Multinational firm, monopolistic competition, foreign investment uncertainty,FDI option

    Angle Tree: Nearest Neighbor Search in High Dimensions with Low Intrinsic Dimensionality

    Full text link
    We propose an extension of tree-based space-partitioning indexing structures for data with low intrinsic dimensionality embedded in a high dimensional space. We call this extension an Angle Tree. Our extension can be applied to both classical kd-trees as well as the more recent rp-trees. The key idea of our approach is to store the angle (the "dihedral angle") between the data region (which is a low dimensional manifold) and the random hyperplane that splits the region (the "splitter"). We show that the dihedral angle can be used to obtain a tight lower bound on the distance between the query point and any point on the opposite side of the splitter. This in turn can be used to efficiently prune the search space. We introduce a novel randomized strategy to efficiently calculate the dihedral angle with a high degree of accuracy. Experiments and analysis on real and synthetic data sets shows that the Angle Tree is the most efficient known indexing structure for nearest neighbor queries in terms of preprocessing and space usage while achieving high accuracy and fast search time.Comment: To be submitted to IEEE Transactions on Pattern Analysis and Machine Intelligenc

    Highlights from day three of the EuroSciCon 2015 Sports Science Summit.

    Get PDF
    This EuroSciCon Sports Science Summit represented a significant gathering of leading professionals in the field of sports science. The conference was held on 13-15 January 2015 at the O2 arena, London, UK. The chairman on the third day was Mr Greg Robertson, a specialist trainee Orthopedic surgeon from Edinburgh. The conference attracted over 80 attendants from all over the world, with 32 presentations from invited speakers and peer-reviewed submissions. This meeting report provides a summary of the best abstracts from the conference

    Learning From Labeled And Unlabeled Data: An Empirical Study Across Techniques And Domains

    Full text link
    There has been increased interest in devising learning techniques that combine unlabeled data with labeled data ? i.e. semi-supervised learning. However, to the best of our knowledge, no study has been performed across various techniques and different types and amounts of labeled and unlabeled data. Moreover, most of the published work on semi-supervised learning techniques assumes that the labeled and unlabeled data come from the same distribution. It is possible for the labeling process to be associated with a selection bias such that the distributions of data points in the labeled and unlabeled sets are different. Not correcting for such bias can result in biased function approximation with potentially poor performance. In this paper, we present an empirical study of various semi-supervised learning techniques on a variety of datasets. We attempt to answer various questions such as the effect of independence or relevance amongst features, the effect of the size of the labeled and unlabeled sets and the effect of noise. We also investigate the impact of sample-selection bias on the semi-supervised learning techniques under study and implement a bivariate probit technique particularly designed to correct for such bias

    A Bicriteria Approximation for the Reordering Buffer Problem

    Full text link
    In the reordering buffer problem (RBP), a server is asked to process a sequence of requests lying in a metric space. To process a request the server must move to the corresponding point in the metric. The requests can be processed slightly out of order; in particular, the server has a buffer of capacity k which can store up to k requests as it reads in the sequence. The goal is to reorder the requests in such a manner that the buffer constraint is satisfied and the total travel cost of the server is minimized. The RBP arises in many applications that require scheduling with a limited buffer capacity, such as scheduling a disk arm in storage systems, switching colors in paint shops of a car manufacturing plant, and rendering 3D images in computer graphics. We study the offline version of RBP and develop bicriteria approximations. When the underlying metric is a tree, we obtain a solution of cost no more than 9OPT using a buffer of capacity 4k + 1 where OPT is the cost of an optimal solution with buffer capacity k. Constant factor approximations were known previously only for the uniform metric (Avigdor-Elgrabli et al., 2012). Via randomized tree embeddings, this implies an O(log n) approximation to cost and O(1) approximation to buffer size for general metrics. Previously the best known algorithm for arbitrary metrics by Englert et al. (2007) provided an O(log^2 k log n) approximation without violating the buffer constraint.Comment: 13 page

    Network Design with Coverage Costs

    Get PDF
    We study network design with a cost structure motivated by redundancy in data traffic. We are given a graph, g groups of terminals, and a universe of data packets. Each group of terminals desires a subset of the packets from its respective source. The cost of routing traffic on any edge in the network is proportional to the total size of the distinct packets that the edge carries. Our goal is to find a minimum cost routing. We focus on two settings. In the first, the collection of packet sets desired by source-sink pairs is laminar. For this setting, we present a primal-dual based 2-approximation, improving upon a logarithmic approximation due to Barman and Chawla (2012). In the second setting, packet sets can have non-trivial intersection. We focus on the case where each packet is desired by either a single terminal group or by all of the groups, and the graph is unweighted. For this setting we present an O(log g)-approximation. Our approximation for the second setting is based on a novel spanner-type construction in unweighted graphs that, given a collection of g vertex subsets, finds a subgraph of cost only a constant factor more than the minimum spanning tree of the graph, such that every subset in the collection has a Steiner tree in the subgraph of cost at most O(log g) that of its minimum Steiner tree in the original graph. We call such a subgraph a group spanner.Comment: Updated version with additional result
    corecore