28 research outputs found

    Tmem26 Is Dynamically Expressed during Palate and Limb Development but Is Not Required for Embryonic Survival

    Get PDF
    The Tmem26 gene encodes a novel protein that we have previously shown to be regulated by hedgehog signalling in the mouse limb. We now report that Tmem26 expression is spatially and temporally restricted in other regions of the mouse embryo, most notably the facial primordia. In particular, Tmem26 expression in the mesenchyme of the maxillary and nasal prominences is coincident with fusion of the primary palate. In the secondary palate, Tmem26 is expressed in the palatal shelves during their growth and fusion but is downregulated once fusion is complete. Expression was also detected at the midline of the expanding mandible and at the tips of the eyelids as they migrate across the cornea. Given the spatio-temporally restricted expression of Tmem26, we sought to uncover a functional role in embryonic development through targeted gene inactivation in the mouse. However, ubiquitous inactivation of Tmem26 led to no overt phenotype in the resulting embryos or adult mice, suggesting that TMEM26 function is dispensable for embryonic survival

    Cdx1 and Cdx2 have Overlapping Functions in Anteroposterior Patterning and Posterior Axis Elongation

    Get PDF
    Mouse Cdx and Hox genes presumably evolved from genes on a common ancestor cluster involved in anteroposterior patterning. Drosophila caudal (cad) is involved in specifying the posterior end of the early embryo, and is essential for patterning tissues derived from the most caudal segment, the analia. Two of the three mouse Cdx paralogues, Cdx 1 and Cdx2, are expressed early in a Hox-like manner in the three germ layers. In the nascent paraxial mesoderm, both genes are expressed in cells contributing first to the most rostral, and then to progressively more caudal parts of the vertebral column. Later, expression regresses from the anterior sclerotomes, and is only maintained for Cdx1 in the dorsal part of the somites, and for both genes in the tail bud. Cdx1 null mutants show anterior homeosis of upper cervical and thoracic vertebrae. Cdx2-null embryos die before gastrulation, and Cdx2 heterozygotes display anterior transformations of lower cervical and thoracic vertebrae. We have analysed the genetic interactions between Cdx1 and Cdx2 in compound mutants. Combining mutant alleles for both genes gives rise to anterior homeotic transformations along a more extensive length of the vertebral column than do single mutations. The most severely affected Cdx1 null/Cdx2 heterozygous mice display a posterior shift of their cranio-cervical, cervico-thoracic, thoraco-lumbar, lumbo-sacral and sacro-caudal transitions. The effects of the mutations in Cdx1 and Cdx2 were co-operative in severity, and a more extensive posterior shift of the expression of three Hox genes was observed in double mutants. The alteration in Hox expression boundaries occurred early. We conclude that both Cdx genes cooperate at early stages in instructing the vertebral progenitors all along the axis, at least in part by setting the rostral expression boundaries of Hox genes. In addition, Cdx mutants transiently exhibit alterations in the extent of Hox expression domains in the spinal cord, reminding of the strong effects of overexpressing Cdx genes on Hox gene expression in the neurectoderm. Phenotypical alterations in the peripheral nervous system were observed at mid-gestation stages. Strikingly, the altered phenotype at caudal levels included a posterior truncation of the tail, mildly affecting Cdx2 heterozygotes, but more severely affecting Cdx1/Cdx2 double heterozygotes and Cdx1 null/Cdx2 heterozygotes. Mutations in Cdx1 and Cdx2 therefore also interfere with axis elongation in a cooperative way. The function of Cdx genes in morphogenetic processes during gastrulation and tail bud extension, and their relationship with the Hox genes are discussed in the light of available data in Amphioxus, C. elegans, Drosophila and mice

    Cdx2 Animal Models Reveal Developmental Origins of Cancers

    No full text
    The Cdx2 homeobox gene is important in assigning positional identity during the finely orchestrated process of embryogenesis. In adults, regenerative responses to tissues damage can require a replay of these same developmental pathways. Errors in reassigning positional identity during regeneration can cause metaplasias—normal tissue arising in an abnormal location—and this in turn, is a well-recognized cancer risk factor. In animal models, a gain of Cdx2 function can elicit a posterior shift in tissue identity, modeling intestinal-type metaplasias of the esophagus (Barrett’s esophagus) and stomach. Conversely, loss of Cdx2 function can elicit an anterior shift in tissue identity, inducing serrated-type lesions expressing gastric markers in the colon. These metaplasias are major risk factors for the later development of esophageal, stomach and colon cancer. Leukemia, another cancer in which Cdx2 is ectopically expressed, may have mechanistic parallels with epithelial cancers in terms of stress-induced reprogramming. This review will address how animal models have refined our understanding of the role of Cdx2 in these common human cancers

    Endothelial cells and VEGF in vascular development

    No full text
    The intricate patterning processes that establish the complex vascular system during development depend on a combination of intrinsic pre-patterning and extrinsic responses to environmental parameters. Mutational studies in mice and fish have shown that the vascular system is highly sensitive to genetic disruption and have identified potential targets for therapeutic interventions. New insights into non-vascular roles of vascular endothelial growth factor and the requirement for endothelial cells in adult organs and stem-cell niches highlight possible side effects of anti-angiogenic therapy and the need for new targets

    Trophoblast-specific gene manipulation using lentivirus-based vectors

    No full text
    The trophoblast layers of the mammalian placenta carry out many complex functions required to pattern the developing embryo and maintain its growth and survival in the uterine environment. Genetic disruption of many gene pathways can result in embryonic lethality because of placental failure, potentially confusing the interpretation of mouse knockout phenotypes. Development of tools to specifically and efficiently manipulate gene expression in the trophoblast lineage would greatly aid understanding of the relative roles of different genetic pathways in the trophoblast versus embryonic lineages. We show that short-term lentivirus-mediated infection of mouse blastocysts can lead to rapid expression of a green fluorescent protein (GFP) transgene specifically in the outer trophoblast progenitors and their later placental derivatives. Efficient trophoblast-specific gene knockdown can also be produced by lentivirus-mediated pol III-driven short hairpin RNA (shRNA) and efficient trophoblastspecific gene knockout by pol II-driven Cre recombinase lentiviral vectors. This lentivirus lineage-specific infection system thus facilitates both gain and loss of function studies during placental development in the mouse and potentially other mammalian species

    A site-specific, single-copy transgenesis strategy to identify 5' regulatory sequences of the mouse testis-determining gene Sry.

    No full text
    The Y-chromosomal gene SRY acts as the primary trigger for male sex determination in mammalian embryos. Correct regulation of SRY is critical: aberrant timing or level of Sry expression is known to disrupt testis development in mice and we hypothesize that mutations that affect regulation of human SRY may account for some of the many cases of XY gonadal dysgenesis that currently remain unexplained. However, the cis-sequences involved in regulation of Sry have not been identified, precluding a test of this hypothesis. Here, we used a transgenic mouse approach aimed at identifying mouse Sry 5' flanking regulatory sequences within 8 kb of the Sry transcription start site (TSS). To avoid problems associated with conventional pronuclear injection of transgenes, we used a published strategy designed to yield single-copy transgene integration at a defined, transcriptionally open, autosomal locus, Col1a1. None of the Sry transgenes tested was expressed at levels compatible with activation of Sox9 or XX sex reversal. Our findings indicate either that the Col1a1 locus does not provide an appropriate context for the correct expression of Sry transgenes, or that the cis-sequences required for Sry expression in the developing gonads lie beyond 8 kb 5' of the TSS

    Loss of Wnt5a disrupts primordial germ cell migration and male sexual development in mice

    No full text
    Disruptions in the regulatory pathways controlling sex determination and differentiation can cause disorders of sex development, often compromising reproductive function. Although extensive efforts have been channeled into elucidating the regulatory mechanisms controlling the many aspects of sexual differentiation, the majority of disorders of sex development phenotypes are still unexplained at the molecular level. In this study, we have analyzed the potential involvement of Wnt5a in sexual development and show in mice that Wnt5a is male-specifically upregulated within testicular interstitial cells at the onset of gonad differentiation. Homozygous deletion of Wnt5a affected sexual development in male mice, causing testicular hypoplasia and bilateral cryptorchidism despite the Leydig cells producing factors such as Hsd3b1 and Insl3. Additionally, Wnt5a-null embryos of both sexes showed a significant reduction in gonadal germ cell numbers, which was caused by aberrant primordial germ cell migration along the hindgut endoderm prior to gonadal colonization. Our results indicate multiple roles for Wnt5a during mammalian reproductive development and help to clarify further the etiology of Robinow syndrome (OMIM 268310), a disease previously linked to the WNT5A pathway

    The epigenetic modifier Fam208a is required to maintain epiblast cell fitness

    No full text
    Abstract Gastrulation initiates with the formation of the primitive streak, during which, cells of the epiblast delaminate to form the mesoderm and definitive endoderm. At this stage, the pluripotent cell population of the epiblast undergoes very rapid proliferation and extensive epigenetic programming. Here we show that Fam208a, a new epigenetic modifier, is essential for early post-implantation development. We show that Fam208a mutation leads to impaired primitive streak elongation and delayed epithelial-to-mesenchymal transition. Fam208a mutant epiblasts had increased expression of p53 pathway genes as well as several pluripotency-associated long non-coding RNAs. Fam208a mutants exhibited an increase in p53-driven apoptosis and complete removal of p53 could partially rescue their gastrulation block. This data demonstrates a new in vivo function of Fam208a in maintaining epiblast fitness, establishing it as an important factor at the onset of gastrulation when cells are exiting pluripotency
    corecore