27 research outputs found

    Risk management in HIV/AIDS: ethical and economic issues concerning the restriction of HAART access only to adherent patients

    Get PDF
    MSc (Med), Bioethics and Health Law, Faculty of Health Sciences, University of the WitwatersrandSouth Africa, like many other developing nations, is faced with the challenge of mobilising resources to fight the HIV/AIDS pandemic. There is a huge budget gap between the ideal and actual funding provided to achieve universal access to highly active antiretroviral therapy (HAART), which leads to the inevitable rationing of HAART. Although healthcare spending has been increasing in South Africa, new demands are being placed on the HAART roll out programmes. This is particularly due to the emergence of HIV drug resistance (HIVDR). Because non-adherence to HAART is strongly linked to drug resistance, this is a major threat to any successful HAART programme. In the face of restricted resources, this research report looks at some of the ethical and economic implications of non-adherence to HAART. I suggest that there is merit in considering that HAART be restricted only to adherent patients

    Adult neurogenesis in the brain of chiroptera

    Get PDF
    A thesis submitted to the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Doctor of Philosophy. April, 2016The current thesis, studying adult neurogenesis in the brains of Chiroptera (bats), is a collection of four related studies investigating the occurrence of neurogenesis in the two suborders of adult bats, megachiroptera (megabats) and microchiroptera (microbats), from different environments, including the wild and captive habitats. The studies were carried out in order to understand the dynamics associated with adult neurogenesis in mammals living in their natural habitat given that much of the current understanding is based on experiments done on laboratory bred or captive raised animals. The investigation of megachiropterans and microchiropterans was stimulated by the findings of a previous study which failed to show adult neurogenesis in some microchiropteran species, which is in contrast to the almost universal occurrence of the phenomenon in nearly all mammals. In addition, the use of chiropterans was appealing given their behavioural attributes, which have been previously associated with the occurrence of neurogenesis. These include such behaviours as good spatial abilities, high sociality and complex behaviours such as fusion-fission sociality. In addition, the highly debatable evolutionary history of chiropterans provided a framework in which to evaluate specific neural characters in terms of phylogenetic relationships. Using immunohistochemical methods, the presence and characteristics of proliferating and newly generated neurons in the brain of eight wild-caught adult megachiropteran species was examined. For the neurogenic patterns observed, direct homologies were evident in other mammalian species. Numerous proliferating cells and immature neurons were identified in the subventricular zone (SVZ) and the dentate gyrus. From the SVZ, these cells migrated to the olfactory bulb through a typically mammalian rostral migratory stream (RMS). Some newlygenerated cells were observed emerging from the RMS to the neocortex. Similar to primates, proliferating cells and immature neurons were identified in the SVZ of the temporal horn of the lateral ventricle of the megachiropterans and were observed to migrate to the rostral and caudal piriform cortex through a primate-like temporal migratory stream. A similar study using three microchiropteran species revealed almost similar findings. However, distinct differences to the megachiropterans were noted, especially so in the migratory pathway to the piriform cortex, where cells appeared to migrate from the RMS through an insectivore-like ventral migratory stream to populate the entire piriform cortex. In addition microchiropterans had immature axons in the anterior commissure, something which was not observed in megachiropterans but was previously reported in insectivores. Using immunohistochemical and stereological methods, the effect of animal capture and handling on the occurrence of adult neurogenesis in 10 microchiropterans species was investigated. These animals were euthanized and perfusion fixed at specific time points following capture to investigate the effect of stress as a possible explanation for the negative findings regarding adult hippocampal neurogenesis in microchiropterans reported in a previous study. This investigation revealed that when euthanized and perfused within 15 minutes of capture, abundant putative adult hippocampal neurogenesis could be detected using doublecortin immunohistochemistry, but the ability to readily observe these cells rapidly diminishes if the microchiropterans have not been euthanased within 15 minutes of capture. Also using immunohistochemical and stereological methods, proliferative and immature cells within the dentate gyrus of adult Egyptian fruit bats from three distinct environments (fifth generation captive bred, wild-caught from the primary rainforest of central Africa and wildcaught from the South African woodlands) was quantified and compared. Four previously reported methods to assess the effect of the environment on proliferative and immature cells were used. These include: (1) the comparison of raw totals of proliferative and immature cells; and these totals standardized to (2) brain mass, (3) the volume of the granular cell layer (GCL), and (4) the total number of granule cells in the dentate gyrus. For all methods, the numbers of proliferative cells did not differ statistically amongst the three groups. For the immature cells standardizations to brain mass and GCL volume revealed no difference between the three groups studied; however, the raw numbers and standardization to total granule cell numbers indicated that the two groups of wild-caught bats had significantly higher numbers of immature neurons than the captive-bred bats. In conclusion, the observation of the ventral migratory stream in the microchiropterans and insectivores, in contrast to the temporal migratory stream in megachiropterans and primates adds another neural characteristic supporting the diphyletic origin of Chiroptera, and aligns microchiropterans with insectivores and megachiropterans with primates. In microchiropterans, the presence of doublecortin, revealing adult neurogenesis, in the hippocampus is highly sensitive to capture and handling. Lastly, the interpretation of the effect of the environment on the numbers of immature neurons appears method dependent. It is possible that current methods are not sensitive enough to reveal the effect of different environments on proliferative and immature cells.MB201

    Overview and Development of the Child Health and Mortality Prevention Surveillance Determination of Cause of Death (DeCoDe) Process and DeCoDe Diagnosis Standards

    Get PDF
    Mortality surveillance and cause of death data are instrumental in improving health, identifying diseases and conditions that cause a high burden of preventable deaths, and allocating resources to prevent these deaths. The Child Health and Mortality Prevention Surveillance (CHAMPS) network uses a standardized process to define, assign, and code causes of stillbirth and child death (<5 years of age) across the CHAMPS network. A Determination of Cause of Death (DeCoDe) panel composed of experts from a local CHAMPS site analyzes all available individual information, including laboratory, histopathology, abstracted clinical records, and verbal autopsy findings for each case and, if applicable, also for the mother. Using this information, the site panel ascertains the underlying cause (event that precipitated the fatal sequence of events) and other antecedent, immediate, and maternal causes of death in accordance with the International Classification of Diseases, Tenth Revision and the World Health Organization death certificate. Development and use of the CHAMPS diagnosis standards—a framework of required evidence to support cause of death determination—assures a homogenized procedure leading to a more consistent interpretation of complex data across the CHAMPS network. This and other standardizations ensures future comparability with other sources of mortality data produced externally to this project. Early lessons learned from implementation of DeCoDe in 5 CHAMPS sites in sub-Saharan Africa and Bangladesh have been incorporated into the DeCoDe process, and the implementation of DeCoDe has the potential to spur health systems improvements and local public health action

    Initial findings from a novel population-based child mortality surveillance approach: a descriptive study.

    Get PDF
    --- - Label: BACKGROUND NlmCategory: BACKGROUND content: "Sub-Saharan Africa and south Asia contributed 81% of 5\xC2\xB79 million under-5 deaths and 77% of 2\xC2\xB76 million stillbirths worldwide in 2015. Vital registration and verbal autopsy data are mainstays for the estimation of leading causes of death, but both are non-specific and focus on a single underlying cause. We aimed to provide granular data on the contributory causes of death in stillborn fetuses and in deceased neonates and children younger than 5 years, to inform child mortality prevention efforts." - Label: METHODS NlmCategory: METHODS content: "The Child Health and Mortality Prevention Surveillance (CHAMPS) Network was established at sites in seven countries (Baliakandi, Bangladesh; Harar and Kersa, Ethiopia; Siaya and Kisumu, Kenya; Bamako, Mali; Manhi\xC3\xA7a, Mozambique; Bombali, Sierra Leone; and Soweto, South Africa) to collect standardised, population-based, longitudinal data on under-5 mortality and stillbirths in sub-Saharan Africa and south Asia, to improve the accuracy of determining causes of death. Here, we analysed data obtained in the first 2 years after the implementation of CHAMPS at the first five operational sites, during which surveillance and post-mortem diagnostics, including minimally invasive tissue sampling (MITS), were used. Data were abstracted from all available clinical records of deceased children, and relevant maternal health records were also extracted for stillbirths and neonatal deaths, to incorporate reported pregnancy or delivery complications. Expert panels followed standardised procedures to characterise causal chains leading to death, including underlying, intermediate (comorbid or antecedent causes), and immediate causes of death for stillbirths, neonatal deaths, and child (age 1-59 months) deaths." - Label: FINDINGS NlmCategory: RESULTS content: Between Dec 10, 2016, and Dec 31, 2018, MITS procedures were implemented at five sites in Mozambique, South Africa, Kenya, Mali, and Bangladesh. We screened 2385 death notifications for inclusion eligibility, following which 1295 families were approached for consent; consent was provided for MITS by 963 (74%) of 1295 eligible cases approached. At least one cause of death was identified in 912 (98%) of 933 cases (180 stillbirths, 449 neonatal deaths, and 304 child deaths); two or more conditions were identified in the causal chain for 585 (63%) of 933 cases. The most common underlying causes of stillbirth were perinatal asphyxia or hypoxia (130 [72%] of 180 stillbirths) and congenital infection or sepsis (27 [15%]). The most common underlying causes of neonatal death were preterm birth complications (187 [42%] of 449 neonatal deaths), perinatal asphyxia or hypoxia (98 [22%]), and neonatal sepsis (50 [11%]). The most common underlying causes of child deaths were congenital birth defects (39 [13%] of 304 deaths), lower respiratory infection (37 [12%]), and HIV (35 [12%]). In 503 (54%) of 933 cases, at least one contributory pathogen was identified. Cytomegalovirus, Escherichia coli, group B Streptococcus, and other infections contributed to 30 (17%) of 180 stillbirths. Among neonatal deaths with underlying prematurity, 60% were precipitated by other infectious causes. Of the 275 child deaths with infectious causes, the most common contributory pathogens were Klebsiella pneumoniae (86 [31%]), Streptococcus pneumoniae (54 [20%]), HIV (40 [15%]), and cytomegalovirus (34 [12%]), and multiple infections were common. Lower respiratory tract infection contributed to 174 (57%) of 304 child deaths. - Label: INTERPRETATION NlmCategory: CONCLUSIONS content: Cause of death determination using MITS enabled detailed characterisation of contributing conditions. Global estimates of child mortality aetiologies, which are currently based on a single syndromic cause for each death, will be strengthened by findings from CHAMPS. This approach adds specificity and provides a more complete overview of the chain of events leading to death, highlighting multiple potential interventions to prevent under-5 mortality and stillbirths. - Label: FUNDING NlmCategory: BACKGROUND content: Bill & Melinda Gates Foundation

    Potential of Minimally Invasive Tissue Sampling for Attributing Specific Causes of Childhood Deaths in South Africa: A Pilot, Epidemiological Study

    Get PDF
    Background. Current estimates for causes of childhood deaths are mainly premised on modeling of vital registration and limited verbal autopsy data and generally only characterize the underlying cause of death (CoD). We investigated the potential of minimally invasive tissue sampling (MITS) for ascertaining the underlying and immediate CoD in children 1 month to 14 years of age. Methods. MITS included postmortem tissue biopsies of brain, liver, and lung for histopathology examination; microbial culture of blood, cerebrospinal fluid (CSF), liver, and lung samples; and molecular microbial testing on blood, CSF, lung, and rectal swabs. Each case was individually adjudicated for underlying, antecedent, and immediate CoD by an international multidisciplinary team of medical experts and coded using the International Classification of Diseases, Tenth Revision (ICD-10). Results. An underlying CoD was determined for 99% of 127 cases, leading causes being congenital malformations (18.9%), complications of prematurity (14.2%), human immunodeficiency virus/AIDS (12.6%), diarrheal disease (8.7%), acute respiratory infections (7.9%), injuries (7.9%), and malignancies (7.1%). The main immediate CoD was pneumonia, sepsis, and diarrhea in 33.9%, 19.7%, and 10.2% of cases, respectively. Infection-related deaths were either an underlying or immediate CoD in 78.0% of cases. Community-acquired pneumonia deaths (n = 32) were attributed to respiratory syncytial virus (21.9%), Pneumocystis jirovecii (18.8%), cytomegalovirus (15.6%), Klebsiella pneumoniae (15.6%), and Streptococcus pneumoniae (12.5%). Seventy-one percent of 24 sepsis deaths were hospital-acquired, mainly due to Acinetobacter baumannii (47.1%) and K. pneumoniae (35.3%). Sixty-two percent of cases were malnourished. Conclusions. MITS, coupled with antemortem clinical information, provides detailed insight into causes of childhood deaths that could be informative for prioritization of strategies aimed at reducing under-5 mortality

    Unraveling Specific Causes of Neonatal Mortality Using Minimally Invasive Tissue Sampling: An Observational Study

    Get PDF
    Background. Postmortem minimally invasive tissue sampling (MITS) is a potential alternative to the gold standard complete diagnostic autopsy for identifying specific causes of childhood deaths. We investigated the utility of MITS, interpreted with available clinical data, for attributing underlying and immediate causes of neonatal deaths. Methods. This prospective, observational pilot study enrolled neonatal deaths at Chris Hani Baragwanath Academic Hospital in Soweto, South Africa. The MITS included needle core-biopsy sampling for histopathology of brain, lung, and liver tissue. Microbiological culture and/or molecular tests were performed on lung, liver, blood, cerebrospinal fluid, and stool samples. The “underlying” and “immediate” causes of death (CoD) were determined for each case by an international panel of 12–15 medical specialists. Results. We enrolled 153 neonatal deaths, 106 aged 3–28 days. Leading underlying CoD included “complications of prematurity” (52.9%), “complications of intrapartum events” (15.0%), “congenital malformations” (13.1%), and “infection related” (9.8%). Overall, infections were the immediate or underlying CoD in 57.5% (n = 88) of all neonatal deaths, including the immediate CoD in 70.4% (58/81) of neonates with “complications of prematurity” as the underlying cause. Overall, 74.4% of 90 infection-related deaths were hospital acquired, mainly due to multidrug-resistant Acinetobacter baumannii (52.2%), Klebsiella pneumoniae (22.4%), and Staphylococcus aureus (20.9%). Streptococcus agalactiae was the most common pathogen (5/15 [33.3%]) among deaths with “infections” as the underlying cause. Conclusions. MITS has potential to address the knowledge gap on specific causes of neonatal mortality. In our setting, this included the hitherto underrecognized dominant role of hospital-acquired multidrug-resistant bacterial infections as the leading immediate cause of neonatal deaths

    Initial findings from a novel population-based child mortality surveillance approach: a descriptive study.

    Get PDF
    BACKGROUND: Sub-Saharan Africa and south Asia contributed 81% of 5·9 million under-5 deaths and 77% of 2·6 million stillbirths worldwide in 2015. Vital registration and verbal autopsy data are mainstays for the estimation of leading causes of death, but both are non-specific and focus on a single underlying cause. We aimed to provide granular data on the contributory causes of death in stillborn fetuses and in deceased neonates and children younger than 5 years, to inform child mortality prevention efforts. METHODS: The Child Health and Mortality Prevention Surveillance (CHAMPS) Network was established at sites in seven countries (Baliakandi, Bangladesh; Harar and Kersa, Ethiopia; Siaya and Kisumu, Kenya; Bamako, Mali; Manhiça, Mozambique; Bombali, Sierra Leone; and Soweto, South Africa) to collect standardised, population-based, longitudinal data on under-5 mortality and stillbirths in sub-Saharan Africa and south Asia, to improve the accuracy of determining causes of death. Here, we analysed data obtained in the first 2 years after the implementation of CHAMPS at the first five operational sites, during which surveillance and post-mortem diagnostics, including minimally invasive tissue sampling (MITS), were used. Data were abstracted from all available clinical records of deceased children, and relevant maternal health records were also extracted for stillbirths and neonatal deaths, to incorporate reported pregnancy or delivery complications. Expert panels followed standardised procedures to characterise causal chains leading to death, including underlying, intermediate (comorbid or antecedent causes), and immediate causes of death for stillbirths, neonatal deaths, and child (age 1-59 months) deaths. FINDINGS: Between Dec 10, 2016, and Dec 31, 2018, MITS procedures were implemented at five sites in Mozambique, South Africa, Kenya, Mali, and Bangladesh. We screened 2385 death notifications for inclusion eligibility, following which 1295 families were approached for consent; consent was provided for MITS by 963 (74%) of 1295 eligible cases approached. At least one cause of death was identified in 912 (98%) of 933 cases (180 stillbirths, 449 neonatal deaths, and 304 child deaths); two or more conditions were identified in the causal chain for 585 (63%) of 933 cases. The most common underlying causes of stillbirth were perinatal asphyxia or hypoxia (130 [72%] of 180 stillbirths) and congenital infection or sepsis (27 [15%]). The most common underlying causes of neonatal death were preterm birth complications (187 [42%] of 449 neonatal deaths), perinatal asphyxia or hypoxia (98 [22%]), and neonatal sepsis (50 [11%]). The most common underlying causes of child deaths were congenital birth defects (39 [13%] of 304 deaths), lower respiratory infection (37 [12%]), and HIV (35 [12%]). In 503 (54%) of 933 cases, at least one contributory pathogen was identified. Cytomegalovirus, Escherichia coli, group B Streptococcus, and other infections contributed to 30 (17%) of 180 stillbirths. Among neonatal deaths with underlying prematurity, 60% were precipitated by other infectious causes. Of the 275 child deaths with infectious causes, the most common contributory pathogens were Klebsiella pneumoniae (86 [31%]), Streptococcus pneumoniae (54 [20%]), HIV (40 [15%]), and cytomegalovirus (34 [12%]), and multiple infections were common. Lower respiratory tract infection contributed to 174 (57%) of 304 child deaths. INTERPRETATION: Cause of death determination using MITS enabled detailed characterisation of contributing conditions. Global estimates of child mortality aetiologies, which are currently based on a single syndromic cause for each death, will be strengthened by findings from CHAMPS. This approach adds specificity and provides a more complete overview of the chain of events leading to death, highlighting multiple potential interventions to prevent under-5 mortality and stillbirths. FUNDING: Bill & Melinda Gates Foundation

    Mortality Surveillance Methods to Identify and Characterize Deaths in Child Health and Mortality Prevention Surveillance Network Sites

    Get PDF
    Despite reductions over the past 2 decades, childhood mortality remains high in low- and middle-income countries in sub-Saharan Africa and South Asia. In these settings, children often die at home, without contact with the health system, and are neither accounted for, nor attributed with a cause of death. In addition, when cause of death determinations occur, they often use nonspecific methods. Consequently, findings from models currently utilized to build national and global estimates of causes of death are associated with substantial uncertainty. Higher-quality data would enable stakeholders to effectively target interventions for the leading causes of childhood mortality, a critical component to achieving the Sustainable Development Goals by eliminating preventable perinatal and childhood deaths. The Child Health and Mortality Prevention Surveillance (CHAMPS) Network tracks the causes of under-5 mortality and stillbirths at sites in sub-Saharan Africa and South Asia through comprehensive mortality surveillance, utilizing minimally invasive tissue sampling (MITS), postmortem laboratory and pathology testing, verbal autopsy, and clinical and demographic data. CHAMPS sites have established facility- and community-based mortality notification systems, which aim to report potentially eligible deaths, defined as under-5 deaths and stillbirths within a defined catchment area, within 24-36 hours so that MITS can be conducted quickly after death. Where MITS has been conducted, a final cause of death is determined by an expert review panel. Data on cause of death will be provided to local, national, and global stakeholders to inform strategies to reduce perinatal and childhood mortality in sub-Saharan Africa and South Asia

    Adult neurogenesis in eight Megachiropteran species

    No full text
    The present study evaluated, using immunohistochemical methods, the presence and characteristics of proliferating and newly generated neurons in the brain of eight wild-caught adult Megachiropteran species. For the neurogenic patterns observed, direct homologies are evident in other mammalian species; however, there were several distinctions in the presence or absence of proliferating and immature neurons, and migratory streams that provide important clues regarding the use of the brain in the analysis of Chiropteran phylogenetic affinities. In all eight species studied, numerous Ki-67- and doublecortin (DCX)-immunopositive cells were identified in the subventricular zone (SVZ). These cells migrated to the olfactory bulb through a Primate-like rostral migratory stream (RMS) that is composed of dorsal and ventral substreams which merge before entering the olfactory bulb. Some cells were observed emerging from the RMS coursing caudally and dorsally to the rostral neocortex. In the dentate gyrus of all species, Ki-67- and DCX-expressing cells were observed in the granular cell layer and hilus. Similar to Primates, proliferating cells and immature neurons were identified in the SVZ of the temporal horn of Megachiropterans. These cells migrated to the rostral and caudal piriform cortex through a Primate-like temporal migratory stream. Sparsely distributed Ki-67-immunopositive, but DCX-immunonegative, cells were identified in the tectum, brainstem and cerebellum. The observations from this study add to a number of neural characteristics that phylogenetically align Megachiropterans to Primates
    corecore