276 research outputs found

    Synthesis and evaluation of thermally-responsive coatings based upon Diels–Alder chemistry and renewable materials

    Get PDF
    A soybean based coating with thermally responsive Diels–Alder linkages has been prepared following an automotive 2-component formulation. The resulting coatings displayed the capability to be healed following physical deformation by a thermal stimulus, and such a material has significant potential for end users. Various curing agents were employed, and resulted in variation of scratch resistance and re-healablity. Different thermally responsive soybean resins were synthesized to have varying amounts reversible and nonreversible linkages when incorporated into the coating. Additionally, different isocyanates were added at differing ratios of NCO:OH in search of the optimum coating. It was found through the analysis of rehealability, hardness, gloss, and adhesion that the optimal combination was an acetylated resin (no irreversible crosslinks) with 54% reversible Diels–Alder linkages at an NCO:OH ratio of 5:1 using isophorone diiscocyanate. Materials were evaluated via differential scanning calorimetry (DSC), scratch resistance, Koenig hardness, gloss measurements, and topographical analysis

    Cyanobacterial distributions along a physico-chemical gradient in the Northeastern Pacific Ocean

    Get PDF
    The cyanobacteria Prochlorococcus and Synechococcus are important marine primary producers. We explored their distributions and covariance along a physico-chemical gradient from coastal to open ocean waters in the Northeastern Pacific Ocean. An inter-annual pattern was delineated in the dynamic transition zone where upwelled and eastern boundary current waters mix, and two new Synechococcus clades, Eastern Pacific Clade (EPC) 1 and EPC2, were identified. By applying state-of-the-art phylogenetic analysis tools to bar-coded 16S amplicon datasets, we observed higher abundance of Prochlorococcus high-light I (HLI) and low-light I (LLI) in years when more oligotrophic water intruded farther inshore, while under stronger upwelling Synechococcus I and IV dominated. However, contributions of some cyanobacterial clades were proportionally relatively constant, e.g. Synechococcus EPC2. In addition to supporting observations that Prochlorococcus LLI thrive at higher irradiances than other LL taxa, the results suggest LLI tolerate lower temperatures than previously reported. The phylogenetic precision of our 16S rRNA gene analytical approach and depth of bar-coded sequencing also facilitated detection of clades at low abundance in unexpected places. These include Prochlorococcus at the coast and Cyanobium-related sequences offshore, although it remains unclear whether these came from resident or potentially advected cells. Our study enhances understanding of cyanobacterial distributions in an ecologically important eastern boundary system. © 2014 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd

    Genome-scale case-control analysis of CD4+ T-cell DNA methylation in juvenile idiopathic arthritis reveals potential targets involved in disease

    Get PDF
    BACKGROUND: Juvenile Idiopathic Arthritis (JIA) is a complex autoimmune rheumatic disease of largely unknown cause. Evidence is growing that epigenetic variation, particularly DNA methylation, is associated with autoimmune disease. However, nothing is currently known about the potential role of aberrant DNA methylation in JIA. As a first step to addressing this knowledge gap, we have profiled DNA methylation in purified CD4+ T cells from JIA subjects and controls. Genomic DNA was isolated from peripheral blood CD4+ T cells from 14 oligoarticular and polyarticular JIA cases with active disease, and healthy age- and sex-matched controls. Genome-scale methylation analysis was carried out using the Illumina Infinium HumanMethylation27 BeadChip. Methylation data at >25,000 CpGs was compared in a case-control study design. RESULTS: Methylation levels were significantly different (FDR adjusted p<0.1) at 145 loci. Removal of four samples exposed to methotrexate had a striking impact on the outcome of the analysis, reducing the number of differentially methylated loci to 11. The methotrexate-naive analysis identified reduced methylation at the gene encoding the pro-inflammatory cytokine IL32, which was subsequently replicated using a second analysis platform and a second set of case-control pairs. CONCLUSIONS: Our data suggests that differential T cell DNA methylation may be a feature of JIA, and that reduced methylation at IL32 is associated with this disease. Further work in larger prospective and longitudinal sample collections is required to confirm these findings, assess whether the identified differences are causal or consequential of disease, and further investigate the epigenetic modifying properties of therapeutic regimens

    DNA methylation at IL32 in juvenile idiopathic arthritis

    Full text link
    Juvenile idiopathic arthritis (JIA) is the most common autoimmune rheumatic disease of childhood. We recently showed that DNA methylation at the gene encoding the pro-inflammatory cytokine interleukin-32 (IL32) is reduced in JIA CD4+ T cells. To extend this finding, we measured IL32 methylation in CD4+ T-cells from an additional sample of JIA cases and age- and sex-matched controls, and found a reduction in methylation associated with JIA consistent with the prior data (combined case-control dataset: 25.0% vs 37.7%, p = 0.0045). Further, JIA was associated with reduced IL32 methylation in CD8+ T cells (15.2% vs 25.5%, p = 0.034), suggesting disease-associated changes to a T cell precursor. Additionally, we measured regional SNPs, along with CD4+ T cell expression of total IL32, and the γ and β isoforms. Several SNPs were associated with methylation. Two SNPs were also associated with JIA, and we found evidence of interaction such that methylation was only associated with JIA in minor allele carriers (e.g. rs10431961 p(interaction) = 0.011). Methylation at one measured CpG was inversely correlated with total IL32 expression (Spearman r = −0.73, p = 0.0009), but this was not a JIA-associated CpG. Overall, our data further confirms that reduced IL32 methylation is associated with JIA, and that SNPs play an interactive role

    Characterizing Ligand-Gated Ion Channel Receptors with Genetically Encoded Ca++ Sensors

    Get PDF
    We present a cell based system and experimental approach to characterize agonist and antagonist selectivity for ligand-gated ion channels (LGIC) by developing sensor cells stably expressing a Ca2+ permeable LGIC and a genetically encoded Förster (or fluorescence) resonance energy transfer (FRET)-based calcium sensor. In particular, we describe separate lines with human α7 and human α4β2 nicotinic acetylcholine receptors, mouse 5-HT3A serotonin receptors and a chimera of human α7/mouse 5-HT3A receptors. Complete concentration-response curves for agonists and Schild plots of antagonists were generated from these sensors and the results validate known pharmacology of the receptors tested. Concentration-response relations can be generated from either the initial rate or maximal amplitudes of FRET-signal. Although assaying at a medium throughput level, this pharmacological fluorescence detection technique employs a clonal line for stability and has versatility for screening laboratory generated congeners as agonists or antagonists on multiple subtypes of ligand-gated ion channels. The clonal sensor lines are also compatible with in vivo usage to measure indirectly receptor activation by endogenous neurotransmitters
    corecore